@article{KuhlaWillnerOttoetal.2021, author = {Kuhla, Kilian and Willner, Sven N. and Otto, Christian and Geiger, Tobias and Levermann, Anders}, title = {Ripple resonance amplifies economic welfare loss from weather extremes}, series = {Environmental research letters : ERL / Institute of Physics}, volume = {16}, journal = {Environmental research letters : ERL / Institute of Physics}, number = {11}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac2932}, pages = {8}, year = {2021}, abstract = {The most complex but potentially most severe impacts of climate change are caused by extreme weather events. In a globally connected economy, damages can cause remote perturbations and cascading consequences-a ripple effect along supply chains. Here we show an economic ripple resonance that amplifies losses when consecutive or overlapping weather extremes and their repercussions interact. This amounts to an average amplification of 21\% for climate-induced heat stress, river floods, and tropical cyclones. Modeling the temporal evolution of 1.8 million trade relations between >7000 regional economic sectors, we find that the regional responses to future extremes are strongly heterogeneous also in their resonance behavior. The induced effect on welfare varies between gains due to increased demand in some regions and losses due to demand or supply shortages in others. Within the current global supply network, the ripple resonance effect of extreme weather is strongest in high-income economies-an important effect to consider when evaluating past and future economic climate impacts.}, language = {en} } @misc{PearceOezkulaGreeneetal.2018, author = {Pearce, Warren and {\"O}zkula, Suay M. and Greene, Amanda K. and Teeling, Lauren and Bansard, Jennifer S. and Omena, Janna Joceli and Rabello, Elaine Teixeira}, title = {Visual cross-platform analysis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, number = {2}, issn = {1867-5808}, doi = {10.25932/publishup-51553}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515539}, pages = {22}, year = {2018}, abstract = {Analysis of social media using digital methods is a flourishing approach. However, the relatively easy availability of data collected via platform application programming interfaces has arguably led to the predominance of single-platform research of social media. Such research has also privileged the role of text in social media analysis, as a form of data that is more readily gathered and searchable than images. In this paper, we challenge both of these prevailing forms of social media research by outlining a methodology for visual cross-platform analysis (VCPA), defined as the study of still and moving images across two or more social media platforms. Our argument contains three steps. First, we argue that cross-platform analysis addresses a gap in research methods in that it acknowledges the interplay between a social phenomenon under investigation and the medium within which it is being researched, thus illuminating the different affordances and cultures of web platforms. Second, we build on the literature on multimodal communication and platform vernacular to provide a rationale for incorporating the visual into cross-platform analysis. Third, we reflect on an experimental cross-platform analysis of images within social media posts (n = 471,033) used to communicate climate change to advance different modes of macro- and meso-levels of analysis that are natively visual: image-text networks, image plots and composite images. We conclude by assessing the research pathways opened up by VCPA, delineating potential contributions to empirical research and theory and the potential impact on practitioners of social media communication.}, language = {en} } @article{PearceOezkulaGreeneetal.2018, author = {Pearce, Warren and {\"O}zkula, Suay M. and Greene, Amanda K. and Teeling, Lauren and Bansard, Jennifer S. and Omena, Janna Joceli and Rabello, Elaine Teixeira}, title = {Visual cross-platform analysis}, series = {Information, Communication and Society: digital methods to research social media images}, volume = {23}, journal = {Information, Communication and Society: digital methods to research social media images}, number = {2}, publisher = {Routledge}, address = {London}, issn = {1468-4462}, doi = {10.1080/1369118X.2018.1486871}, pages = {161 -- 180}, year = {2018}, abstract = {Analysis of social media using digital methods is a flourishing approach. However, the relatively easy availability of data collected via platform application programming interfaces has arguably led to the predominance of single-platform research of social media. Such research has also privileged the role of text in social media analysis, as a form of data that is more readily gathered and searchable than images. In this paper, we challenge both of these prevailing forms of social media research by outlining a methodology for visual cross-platform analysis (VCPA), defined as the study of still and moving images across two or more social media platforms. Our argument contains three steps. First, we argue that cross-platform analysis addresses a gap in research methods in that it acknowledges the interplay between a social phenomenon under investigation and the medium within which it is being researched, thus illuminating the different affordances and cultures of web platforms. Second, we build on the literature on multimodal communication and platform vernacular to provide a rationale for incorporating the visual into cross-platform analysis. Third, we reflect on an experimental cross-platform analysis of images within social media posts (n = 471,033) used to communicate climate change to advance different modes of macro- and meso-levels of analysis that are natively visual: image-text networks, image plots and composite images. We conclude by assessing the research pathways opened up by VCPA, delineating potential contributions to empirical research and theory and the potential impact on practitioners of social media communication.}, language = {en} } @article{PalmerGregoryBaggeetal.2020, author = {Palmer, Matthew D. and Gregory, Jonathan and Bagge, Meike and Calvert, Daley and Hagedoorn, Jan Marius and Howard, Tom and Klemann, Volker and Lowe, Jason A. and Roberts, Chris and Slangen, Aimee B. A. and Spada, Giorgio}, title = {Exploring the drivers of global and local sea-level change over the 21st century and beyond}, series = {Earth's future}, volume = {8}, journal = {Earth's future}, number = {9}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1029/2019EF001413}, pages = {1 -- 25}, year = {2020}, abstract = {We present a new set of global and local sea-level projections at example tide gauge locations under the RCP2.6, RCP4.5, and RCP8.5 emissions scenarios. Compared to the CMIP5-based sea-level projections presented in IPCC AR5, we introduce a number of methodological innovations, including (i) more comprehensive treatment of uncertainties, (ii) direct traceability between global and local projections, and (iii) exploratory extended projections to 2300 based on emulation of individual CMIP5 models. Combining the projections with observed tide gauge records, we explore the contribution to total variance that arises from sea-level variability, different emissions scenarios, and model uncertainty. For the period out to 2300 we further breakdown the model uncertainty by sea-level component and consider the dependence on geographic location, time horizon, and emissions scenario. Our analysis highlights the importance of local variability for sea-level change in the coming decades and the potential value of annual-to-decadal predictions of local sea-level change. Projections to 2300 show a substantial degree of committed sea-level rise under all emissions scenarios considered and highlight the reduced future risk associated with RCP2.6 and RCP4.5 compared to RCP8.5. Tide gauge locations can show large ( > 50\%) departures from the global average, in some cases even reversing the sign of the change. While uncertainty in projections of the future Antarctic ice dynamic response tends to dominate post-2100, we see substantial differences in the breakdown of model variance as a function of location, time scale, and emissions scenario.}, language = {en} } @misc{PalmerGregoryBaggeetal.2020, author = {Palmer, Matthew D. and Gregory, Jonathan and Bagge, Meike and Calvert, Daley and Hagedoorn, Jan Marius and Howard, Tom and Klemann, Volker and Lowe, Jason A. and Roberts, Chris and Slangen, Aimee B. A. and Spada, Giorgio}, title = {Exploring the drivers of global and local sea-level change over the 21st century and beyond}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-54988}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549881}, pages = {27}, year = {2020}, abstract = {We present a new set of global and local sea-level projections at example tide gauge locations under the RCP2.6, RCP4.5, and RCP8.5 emissions scenarios. Compared to the CMIP5-based sea-level projections presented in IPCC AR5, we introduce a number of methodological innovations, including (i) more comprehensive treatment of uncertainties, (ii) direct traceability between global and local projections, and (iii) exploratory extended projections to 2300 based on emulation of individual CMIP5 models. Combining the projections with observed tide gauge records, we explore the contribution to total variance that arises from sea-level variability, different emissions scenarios, and model uncertainty. For the period out to 2300 we further breakdown the model uncertainty by sea-level component and consider the dependence on geographic location, time horizon, and emissions scenario. Our analysis highlights the importance of local variability for sea-level change in the coming decades and the potential value of annual-to-decadal predictions of local sea-level change. Projections to 2300 show a substantial degree of committed sea-level rise under all emissions scenarios considered and highlight the reduced future risk associated with RCP2.6 and RCP4.5 compared to RCP8.5. Tide gauge locations can show large ( > 50\%) departures from the global average, in some cases even reversing the sign of the change. While uncertainty in projections of the future Antarctic ice dynamic response tends to dominate post-2100, we see substantial differences in the breakdown of model variance as a function of location, time scale, and emissions scenario.}, language = {en} } @article{LeinsGrimmDrechsler2022, author = {Leins, Johannes A. and Grimm, Volker and Drechsler, Martin}, title = {Large-scale PVA modeling of insects in cultivated grasslands}, series = {Ecology and evolution}, volume = {12}, journal = {Ecology and evolution}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.9063}, pages = {17}, year = {2022}, abstract = {In many species, dispersal is decisive for survival in a changing climate. Simulation models for population dynamics under climate change thus need to account for this factor. Moreover, large numbers of species inhabiting agricultural landscapes are subject to disturbances induced by human land use. We included dispersal in the HiLEG model that we previously developed to study the interaction between climate change and agricultural land use in single populations. Here, the model was parameterized for the large marsh grasshopper (LMG) in cultivated grasslands of North Germany to analyze (1) the species development and dispersal success depending on the severity of climate change in subregions, (2) the additional effect of grassland cover on dispersal success, and (3) the role of dispersal in compensating for detrimental grassland mowing. Our model simulated population dynamics in 60-year periods (2020-2079) on a fine temporal (daily) and high spatial (250 x 250 m(2)) scale in 107 subregions, altogether encompassing a range of different grassland cover, climate change projections, and mowing schedules. We show that climate change alone would allow the LMG to thrive and expand, while grassland cover played a minor role. Some mowing schedules that were harmful to the LMG nevertheless allowed the species to moderately expand its range. Especially under minor climate change, in many subregions dispersal allowed for mowing early in the year, which is economically beneficial for farmers. More severe climate change could facilitate LMG expansion to uninhabited regions but would require suitable mowing schedules along the path. These insights can be transferred to other species, given that the LMG is considered a representative of grassland communities. For more specific predictions on the dynamics of other species affected by climate change and land use, the publicly available HiLEG model can be easily adapted to the characteristics of their life cycle.}, language = {en} } @misc{HuberKrummenauerPenaOrtizetal.2020, author = {Huber, Veronika and Krummenauer, Linda and Pe{\~n}a-Ortiz, Cristina and Lange, Stefan and Gasparrini, Antonio and Vicedo-Cabrera, Ana Maria and Garcia-Herrera, Ricardo and Frieler, Katja}, title = {Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51651}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516511}, pages = {12}, year = {2020}, abstract = {Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993-2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49\% (95\%CI: 3.82-7.19) and 0.81\% (95\%CI: 0.72-0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 degrees C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45\% (95\%CI: -0.02-1.06) at 3 degrees C, 1.53\% (95\%CI: 0.96-2.06) at 4 degrees C, and 2.88\% (95\%CI: 1.60-4.10) at 5 degrees C, compared to today's warming level of 1 degrees C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 degrees C versus 1 degrees C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities.}, language = {en} } @article{HuberKrummenauerPenaOrtizetal.2020, author = {Huber, Veronika and Krummenauer, Linda and Pe{\~n}a-Ortiz, Cristina and Lange, Stefan and Gasparrini, Antonio and Vicedo-Cabrera, Ana Maria and Garcia-Herrera, Ricardo and Frieler, Katja}, title = {Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming}, series = {Environmental Research}, volume = {186}, journal = {Environmental Research}, publisher = {Elsevier}, address = {San Diego, California}, issn = {0013-9351}, doi = {10.1016/j.envres.2020.109447}, pages = {1 -- 10}, year = {2020}, abstract = {Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993-2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49\% (95\%CI: 3.82-7.19) and 0.81\% (95\%CI: 0.72-0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 degrees C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45\% (95\%CI: -0.02-1.06) at 3 degrees C, 1.53\% (95\%CI: 0.96-2.06) at 4 degrees C, and 2.88\% (95\%CI: 1.60-4.10) at 5 degrees C, compared to today's warming level of 1 degrees C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 degrees C versus 1 degrees C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities.}, language = {en} } @misc{StoofLeichsenringPestryakovaEppetal.2020, author = {Stoof-Leichsenring, Kathleen Rosemarie and Pestryakova, Luidmila Agafyevna and Epp, Laura Saskia and Herzschuh, Ulrike}, title = {Phylogenetic diversity and environment form assembly rules for Arctic diatom genera}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {5}, issn = {1866-8372}, doi = {10.25932/publishup-51548}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515485}, pages = {16}, year = {2020}, abstract = {Aim This study investigates taxonomic and phylogenetic diversity in diatom genera to evaluate assembly rules for eukaryotic microbes across the Siberian tree line. We first analysed how phylogenetic distance relates to taxonomic richness and turnover. Second, we used relatedness indices to evaluate if environmental filtering or competition influences the assemblies in space and through time. Third, we used distance-based ordination to test which environmental variables shape diatom turnover. Location Yakutia and Taymyria, Russia: we sampled 78 surface sediments and a sediment core, extending to 7,000 years before present, to capture the forest-tundra transition in space and time respectively. Taxon Arctic freshwater diatoms. Methods We applied metabarcoding to retrieve diatom diversity from surface and core sedimentary DNA. The taxonomic assignment binned sequence types (lineages) into genera and created taxonomic (abundance of lineages within different genera) and phylogenetic datasets (phylogenetic distances of lineages within different genera). Results Contrary to our expectations, we find a unimodal relationship between phylogenetic distance and richness in diatom genera. We discern a positive relationship between phylogenetic distance and taxonomic turnover in spatially and temporally distributed diatom genera. Furthermore, we reveal positive relatedness indices in diatom genera across the spatial environmental gradient and predominantly in time slices at a single location, with very few exceptions assuming effects of competition. Distance-based ordination of taxonomic and phylogenetic turnover indicates that lake environment variables, like HCO3- and water depth, largely explain diatom turnover. Main conclusion Phylogenetic and abiotic assembly rules are important in understanding the regional assembly of diatom genera across lakes in the Siberian tree line ecotone. Using a space-time approach we are able to exclude the influence of geography and elucidate that lake environmental variables primarily shape the assemblies. We conclude that some diatom genera have greater capabilities to adapt to environmental changes, whereas others will be putatively replaced or lost due to the displacement of the Arctic tundra biome under recent global warming.}, language = {en} } @article{StoofLeichsenringPestryakovaEppetal.2020, author = {Stoof-Leichsenring, Kathleen Rosemarie and Pestryakova, Luidmila Agafyevna and Epp, Laura Saskia and Herzschuh, Ulrike}, title = {Phylogenetic diversity and environment form assembly rules for Arctic diatom genera}, series = {Journal of Biogeography}, volume = {47}, journal = {Journal of Biogeography}, number = {5}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0305-0270}, doi = {10.1111/jbi.13786}, pages = {1166 -- 1179}, year = {2020}, abstract = {Aim This study investigates taxonomic and phylogenetic diversity in diatom genera to evaluate assembly rules for eukaryotic microbes across the Siberian tree line. We first analysed how phylogenetic distance relates to taxonomic richness and turnover. Second, we used relatedness indices to evaluate if environmental filtering or competition influences the assemblies in space and through time. Third, we used distance-based ordination to test which environmental variables shape diatom turnover. Location Yakutia and Taymyria, Russia: we sampled 78 surface sediments and a sediment core, extending to 7,000 years before present, to capture the forest-tundra transition in space and time respectively. Taxon Arctic freshwater diatoms. Methods We applied metabarcoding to retrieve diatom diversity from surface and core sedimentary DNA. The taxonomic assignment binned sequence types (lineages) into genera and created taxonomic (abundance of lineages within different genera) and phylogenetic datasets (phylogenetic distances of lineages within different genera). Results Contrary to our expectations, we find a unimodal relationship between phylogenetic distance and richness in diatom genera. We discern a positive relationship between phylogenetic distance and taxonomic turnover in spatially and temporally distributed diatom genera. Furthermore, we reveal positive relatedness indices in diatom genera across the spatial environmental gradient and predominantly in time slices at a single location, with very few exceptions assuming effects of competition. Distance-based ordination of taxonomic and phylogenetic turnover indicates that lake environment variables, like HCO3- and water depth, largely explain diatom turnover. Main conclusion Phylogenetic and abiotic assembly rules are important in understanding the regional assembly of diatom genera across lakes in the Siberian tree line ecotone. Using a space-time approach we are able to exclude the influence of geography and elucidate that lake environmental variables primarily shape the assemblies. We conclude that some diatom genera have greater capabilities to adapt to environmental changes, whereas others will be putatively replaced or lost due to the displacement of the Arctic tundra biome under recent global warming.}, language = {en} }