@article{BaesSobolevGeryaetal.2020, author = {Baes, Marzieh and Sobolev, Stephan V. and Gerya, Taras V. and Brune, Sascha}, title = {Subduction initiation by Plume-Plateau interaction}, series = {Geochemistry, geophysics, geosystems}, volume = {21}, journal = {Geochemistry, geophysics, geosystems}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2020GC009119}, pages = {17}, year = {2020}, abstract = {It has recently been demonstrated that the interaction of a mantle plume with sufficiently old oceanic lithosphere can initiate subduction. However, the existence of large lithospheric heterogeneities, such as a buoyant plateau, in proximity to a rising plume head may potentially hinder the formation of a new subduction zone. Here, we investigate this scenario by means of 3-D numerical thermomechanical modeling. We explore how plume-lithosphere interaction is affected by lithospheric age, relative location of plume head and plateau border, and the strength of the oceanic crust. Our numerical experiments suggest four different geodynamic regimes: (a) oceanic trench formation, (b) circular oceanic-plateau trench formation, (c) plateau trench formation, and (d) no trench formation. We show that regardless of the age and crustal strength of the oceanic lithosphere, subduction can initiate when the plume head is either below the plateau border or at a distance less than the plume radius from the plateau edge. Crustal heterogeneity facilitates subduction initiation of old oceanic lithosphere. High crustal strength hampers the formation of a new subduction zone when the plume head is located below a young lithosphere containing a thick and strong plateau. We suggest that plume-plateau interaction in the western margin of the Caribbean could have resulted in subduction initiation when the plume head impinged onto the oceanic lithosphere close to the border between plateau and oceanic crust.}, language = {en} } @misc{LuDewaldKoutsodendrisetal.2020, author = {Lu, Yin and Dewald, Nico and Koutsodendris, Andreas and Kaboth-Bahr, Stefanie and R{\"o}sler, Wolfgang and Fang, Xiaomin and Pross, J{\"o}rg and Appel, Erwin and Friedrich, Oliver}, title = {Sedimentological evidence for pronounced glacial-interglacial climate fluctuations in NE Tibet in the latest Pliocene to early Pleistocene}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {5}, issn = {1866-8372}, doi = {10.25932/publishup-52576}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525765}, pages = {18}, year = {2020}, abstract = {The intensification of Northern Hemisphere glaciation (iNHG) and uplift of the Tibetan Plateau have been argued to be among the main drivers of climate change in midlatitude Central Asia during the Pliocene/Pleistocene. While most proxy records that support this hypothesis are from regions outside the Tibetan Plateau (such as from the Chinese Loess Plateau), detailed paleoclimatic information for the plateau itself during that time has yet remained elusive. Here we present a temporally highly resolved (similar to 500 years) sedimentological record from the Qaidam Basin situated on the northeastern Tibetan Plateau that shows pronounced glacial-interglacial climate variability during the interval from 2.7 to 2.1 Ma. Glacial (interglacial) intervals are generally characterized by coarser (finer) grain size, minima (maxima) in organic matter content, and maxima (minima) in carbonate content. Comparison of our results with Earth's orbital parameters and proxy records from the Chinese Loess Plateau suggests that the observed climate fluctuations were mainly driven by changes in the Siberian High/East Asian winter monsoon system as a response to the iNHG. They are further proposed to be enhanced by the topography of the Tibetan Plateau and its impact on the position and intensity of the westerlies.}, language = {en} } @article{LuDewaldKoutsodendrisetal.2020, author = {Lu, Yin and Dewald, Nico and Koutsodendris, Andreas and Kaboth-Bahr, Stefanie and R{\"o}sler, Wolfgang and Fang, Xiaomin and Pross, J{\"o}rg and Appel, Erwin and Friedrich, Oliver}, title = {Sedimentological evidence for pronounced glacial-interglacial climate fluctuations in NE Tibet in the latest Pliocene to early Pleistocene}, series = {Paleoceanography and Paleoclimatology}, volume = {35}, journal = {Paleoceanography and Paleoclimatology}, number = {5}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {16}, year = {2020}, abstract = {The intensification of Northern Hemisphere glaciation (iNHG) and uplift of the Tibetan Plateau have been argued to be among the main drivers of climate change in midlatitude Central Asia during the Pliocene/Pleistocene. While most proxy records that support this hypothesis are from regions outside the Tibetan Plateau (such as from the Chinese Loess Plateau), detailed paleoclimatic information for the plateau itself during that time has yet remained elusive. Here we present a temporally highly resolved (similar to 500 years) sedimentological record from the Qaidam Basin situated on the northeastern Tibetan Plateau that shows pronounced glacial-interglacial climate variability during the interval from 2.7 to 2.1 Ma. Glacial (interglacial) intervals are generally characterized by coarser (finer) grain size, minima (maxima) in organic matter content, and maxima (minima) in carbonate content. Comparison of our results with Earth's orbital parameters and proxy records from the Chinese Loess Plateau suggests that the observed climate fluctuations were mainly driven by changes in the Siberian High/East Asian winter monsoon system as a response to the iNHG. They are further proposed to be enhanced by the topography of the Tibetan Plateau and its impact on the position and intensity of the westerlies.}, language = {en} }