@article{FelisattiAagtenMurphyLaubrocketal.2020, author = {Felisatti, Arianna and Aagten-Murphy, David and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {The brain's asymmetric frequency tuning}, series = {Symmetry / Molecular Diversity Preservation International (MDPI)}, volume = {12}, journal = {Symmetry / Molecular Diversity Preservation International (MDPI)}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2073-8994}, doi = {10.3390/sym12122083}, pages = {25}, year = {2020}, abstract = {To construct a coherent multi-modal percept, vertebrate brains extract low-level features (such as spatial and temporal frequencies) from incoming sensory signals. However, because frequency processing is lateralized with the right hemisphere favouring low frequencies while the left favours higher frequencies, this introduces asymmetries between the hemispheres. Here, we describe how this lateralization shapes the development of several cognitive domains, ranging from visuo-spatial and numerical cognition to language, social cognition, and even aesthetic appreciation, and leads to the emergence of asymmetries in behaviour. We discuss the neuropsychological and educational implications of these emergent asymmetries and suggest future research approaches.}, language = {en} } @article{CajarEngbertLaubrock2020, author = {Cajar, Anke and Engbert, Ralf and Laubrock, Jochen}, title = {How spatial frequencies and color drive object search in real-world scenes}, series = {Journal of vision}, volume = {20}, journal = {Journal of vision}, number = {7}, publisher = {Association for Research in Vision and Opthalmology}, address = {Rockville}, issn = {1534-7362}, doi = {10.1167/jov.20.7.8}, pages = {16}, year = {2020}, abstract = {When studying how people search for objects in scenes, the inhomogeneity of the visual field is often ignored. Due to physiological limitations, peripheral vision is blurred and mainly uses coarse-grained information (i.e., low spatial frequencies) for selecting saccade targets, whereas high-acuity central vision uses fine-grained information (i.e., high spatial frequencies) for analysis of details. Here we investigated how spatial frequencies and color affect object search in real-world scenes. Using gaze-contingent filters, we attenuated high or low frequencies in central or peripheral vision while viewers searched color or grayscale scenes. Results showed that peripheral filters and central high-pass filters hardly affected search accuracy, whereas accuracy dropped drastically with central low-pass filters. Peripheral filtering increased the time to localize the target by decreasing saccade amplitudes and increasing number and duration of fixations. The use of coarse-grained information in the periphery was limited to color scenes. Central filtering increased the time to verify target identity instead, especially with low-pass filters. We conclude that peripheral vision is critical for object localization and central vision is critical for object identification. Visual guidance during peripheral object localization is dominated by low-frequency color information, whereas high-frequency information, relatively independent of color, is most important for object identification in central vision.}, language = {en} } @misc{CajarEngbertLaubrock2022, author = {Cajar, Anke and Engbert, Ralf and Laubrock, Jochen}, title = {Potsdam Eye-Movement Corpus for Scene Memorization and Search With Color and Spatial-Frequency Filtering}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-56318}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563184}, pages = {1 -- 7}, year = {2022}, language = {en} } @article{CajarEngbertLaubrock2022, author = {Cajar, Anke and Engbert, Ralf and Laubrock, Jochen}, title = {Potsdam Eye-Movement Corpus for Scene Memorization and Search With Color and Spatial-Frequency Filtering}, series = {Frontiers in psychology / Frontiers Research Foundation}, volume = {13}, journal = {Frontiers in psychology / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-1078}, doi = {10.3389/fpsyg.2022.850482}, pages = {1 -- 7}, year = {2022}, language = {en} } @article{CajarSchneeweissEngbertetal.2016, author = {Cajar, Anke and Schneeweiss, Paul and Engbert, Ralf and Laubrock, Jochen}, title = {Coupling of attention and saccades when viewing scenes with central and peripheral degradation}, series = {Journal of vision}, volume = {16}, journal = {Journal of vision}, publisher = {Association for Research in Vision and Opthalmology}, address = {Rockville}, issn = {1534-7362}, doi = {10.1167/16.2.8}, pages = {19}, year = {2016}, abstract = {Degrading real-world scenes in the central or the peripheral visual field yields a characteristic pattern: Mean saccade amplitudes increase with central and decrease with peripheral degradation. Does this pattern reflect corresponding modulations of selective attention? If so, the observed saccade amplitude pattern should reflect more focused attention in the central region with peripheral degradation and an attentional bias toward the periphery with central degradation. To investigate this hypothesis, we measured the detectability of peripheral (Experiment 1) or central targets (Experiment 2) during scene viewing when low or high spatial frequencies were gaze-contingently filtered in the central or the peripheral visual field. Relative to an unfiltered control condition, peripheral filtering induced a decrease of the detection probability for peripheral but not for central targets (tunnel vision). Central filtering decreased the detectability of central but not of peripheral targets. Additional post hoc analyses are compatible with the interpretation that saccade amplitudes and direction are computed in partial independence. Our experimental results indicate that task-induced modulations of saccade amplitudes reflect attentional modulations.}, language = {en} } @misc{CajarSchneeweissEngelbertetal.2016, author = {Cajar, Anke and Schneeweiß, Paul and Engelbert, Ralf and Laubrock, Jochen}, title = {Coupling of attention and saccades when viewing scenes with central and peripheral degradation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394918}, pages = {19}, year = {2016}, abstract = {Degrading real-world scenes in the central or the peripheral visual field yields a characteristic pattern: Mean saccade amplitudes increase with central and decrease with peripheral degradation. Does this pattern reflect corresponding modulations of selective attention? If so, the observed saccade amplitude pattern should reflect more focused attention in the central region with peripheral degradation and an attentional bias toward the periphery with central degradation. To investigate this hypothesis, we measured the detectability of peripheral (Experiment 1) or central targets (Experiment 2) during scene viewing when low or high spatial frequencies were gaze-contingently filtered in the central or the peripheral visual field. Relative to an unfiltered control condition, peripheral filtering induced a decrease of the detection probability for peripheral but not for central targets (tunnel vision). Central filtering decreased the detectability of central but not of peripheral targets. Additional post hoc analyses are compatible with the interpretation that saccade amplitudes and direction are computed in partial independence. Our experimental results indicate that task-induced modulations of saccade amplitudes reflect attentional modulations.}, language = {en} } @article{CajarSchneeweissEngbertetal.2016, author = {Cajar, Anke and Schneeweiß, Paul and Engbert, Ralf and Laubrock, Jochen}, title = {Coupling of attention and saccades when viewing scenes with central and peripheral degradation}, series = {Journal of Vision}, volume = {16}, journal = {Journal of Vision}, number = {2}, publisher = {ARVO}, address = {Rockville, Md.}, issn = {1534-7362}, doi = {10.1167/16.2.8}, pages = {1 -- 19}, year = {2016}, abstract = {Degrading real-world scenes in the central or the peripheral visual field yields a characteristic pattern: Mean saccade amplitudes increase with central and decrease with peripheral degradation. Does this pattern reflect corresponding modulations of selective attention? If so, the observed saccade amplitude pattern should reflect more focused attention in the central region with peripheral degradation and an attentional bias toward the periphery with central degradation. To investigate this hypothesis, we measured the detectability of peripheral (Experiment 1) or central targets (Experiment 2) during scene viewing when low or high spatial frequencies were gaze-contingently filtered in the central or the peripheral visual field. Relative to an unfiltered control condition, peripheral filtering induced a decrease of the detection probability for peripheral but not for central targets (tunnel vision). Central filtering decreased the detectability of central but not of peripheral targets. Additional post hoc analyses are compatible with the interpretation that saccade amplitudes and direction are computed in partial independence. Our experimental results indicate that task-induced modulations of saccade amplitudes reflect attentional modulations.}, language = {en} } @article{LaubrockCajarEngbert2013, author = {Laubrock, Jochen and Cajar, Anke and Engbert, Ralf}, title = {Control of fixation duration during scene viewing by interaction of foveal and peripheral processing}, series = {Journal of vision}, volume = {13}, journal = {Journal of vision}, number = {12}, publisher = {Association for Research in Vision and Opthalmology}, address = {Rockville}, issn = {1534-7362}, doi = {10.1167/13.12.11}, pages = {20}, year = {2013}, abstract = {Processing in our visual system is functionally segregated, with the fovea specialized in processing fine detail (high spatial frequencies) for object identification, and the periphery in processing coarse information (low frequencies) for spatial orienting and saccade target selection. Here we investigate the consequences of this functional segregation for the control of fixation durations during scene viewing. Using gaze-contingent displays, we applied high-pass or low-pass filters to either the central or the peripheral visual field and compared eye-movement patterns with an unfiltered control condition. In contrast with predictions from functional segregation, fixation durations were unaffected when the critical information for vision was strongly attenuated (foveal low-pass and peripheral high-pass filtering); fixation durations increased, however, when useful information was left mostly intact by the filter (foveal high-pass and peripheral low-pass filtering). These patterns of results are difficult to explain under the assumption that fixation durations are controlled by foveal processing difficulty. As an alternative explanation, we developed the hypothesis that the interaction of foveal and peripheral processing controls fixation duration. To investigate the viability of this explanation, we implemented a computational model with two compartments, approximating spatial aspects of processing by foveal and peripheral activations that change according to a small set of dynamical rules. The model reproduced distributions of fixation durations from all experimental conditions by variation of few parameters that were affected by specific filtering conditions.}, language = {en} }