@article{SchlappaBrenkerBresseletal.2021, author = {Schlappa, Stephanie and Brenker, Lee Josephine and Bressel, Lena and Hass, Roland and M{\"u}nzberg, Marvin}, title = {Process characterization of polyvinyl acetate emulsions applying inline photon density wave spectroscopy at high solid contents}, series = {Polymers / Molecular Diversity Preservation International}, volume = {13}, journal = {Polymers / Molecular Diversity Preservation International}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym13040669}, pages = {15}, year = {2021}, abstract = {The high solids semicontinuous emulsion polymerization of polyvinyl acetate using poly (vinyl alcohol-co-vinyl acetate) as protective colloid is investigated by optical spectroscopy. The suitability of Photon Density Wave (PDW) spectroscopy as inline Process Analytical Technology (PAT) for emulsion polymerization processes at high solid contents (>40\% (w/w)) is studied and evaluated. Inline data on absorption and scattering in the dispersion is obtained in real-time. The radical polymerization of vinyl acetate to polyvinyl acetate using ascorbic acid and sodium persulfate as redox initiator system and poly (vinyl alcohol-co-vinyl acetate) as protective colloid is investigated. Starved-feed radical emulsion polymerization yielded particle sizes in the nanometer size regime. PDW spectroscopy is used to monitor the progress of polymerization by studying the absorption and scattering properties during the synthesis of dispersions with increasing monomer amount and correspondingly decreasing feed rate of protective colloid. Results are compared to particle sizes determined with offline dynamic light scattering (DLS) and static light scattering (SLS) during the synthesis.}, language = {en} }