@phdthesis{Schmallowsky2009, author = {Schmallowsky, Antje}, title = {Visualisierung dynamischer Raumph{\"a}nomene in Geoinformationssystemen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41262}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Die visuelle Kommunikation ist eine effiziente Methode, um dynamische Ph{\"a}nomene zu beschreiben. Informationsobjekte pr{\"a}zise wahrzunehmen, einen schnellen Zugriff auf strukturierte und relevante Informationen zu erm{\"o}glichen, erfordert konsistente und nach dem formalen Minimalprinzip konzipierte Analyse- und Darstellungsmethoden. Dynamische Raumph{\"a}nomene in Geoinformationssystemen k{\"o}nnen durch den Mangel an konzeptionellen Optimierungsanpassungen aufgrund ihrer statischen Systemstruktur nur bedingt die Informationen von Raum und Zeit modellieren. Die Forschung in dieser Arbeit ist daher auf drei interdisziplin{\"a}re Ans{\"a}tze fokussiert. Der erste Ansatz stellt eine echtzeitnahe Datenerfassung dar, die in Geodatenbanken zeitorientiert verwaltet wird. Der zweite Ansatz betrachtet Analyse- und Simulationsmethoden, die das dynamische Verhalten analysieren und prognostizieren. Der dritte Ansatz konzipiert Visualisierungsmethoden, die insbesondere dynamische Prozesse abbilden. Die Symbolisierung der Prozesse passt sich bedarfsweise in Abh{\"a}ngigkeit des Prozessverlaufes und der Interaktion zwischen Datenbanken und Simulationsmodellen den verschiedenen Entwicklungsphasen an. Dynamische Aspekte k{\"o}nnen so mit Hilfe bew{\"a}hrter Funktionen aus der GI-Science zeitnah mit modularen Werkzeugen entwickelt und visualisiert werden. Die Analyse-, Verschneidungs- und Datenverwaltungsfunktionen sollen hierbei als Nutzungs- und Auswertungspotential alternativ zu Methoden statischer Karten dienen. Bedeutend f{\"u}r die zeitliche Komponente ist das Verkn{\"u}pfen neuer Technologien, z. B. die Simulation und Animation, basierend auf einer strukturierten Zeitdatenbank in Verbindung mit statistischen Verfahren. Methodisch werden Modellans{\"a}tze und Visualisierungstechniken entwickelt, die auf den Bereich Verkehr transferiert werden. Verkehrsdynamische Ph{\"a}nomene, die nicht zusammenh{\"a}ngend und umfassend darstellbar sind, werden modular in einer serviceorientierten Architektur separiert, um sie in verschiedenen Ebenen r{\"a}umlich und zeitlich visuell zu pr{\"a}sentieren. Entwicklungen der Vergangenheit und Prognosen der Zukunft werden {\"u}ber verschiedene Berechnungsmethoden modelliert und visuell analysiert. Die Verkn{\"u}pfung einer Mikrosimulation (Abbildung einzelner Fahrzeuge) mit einer netzgesteuerten Makrosimulation (Abbildung eines gesamten Straßennetzes) erm{\"o}glicht eine maßstabsunabh{\"a}ngige Simulation und Visualisierung des Mobilit{\"a}tsverhaltens ohne zeitaufwendige Bewertungsmodellberechnungen. Zuk{\"u}nftig wird die visuelle Analyse raum-zeitlicher Ver{\"a}nderungen f{\"u}r planerische Entscheidungen ein effizientes Mittel sein, um Informationen {\"u}bergreifend verf{\"u}gbar, klar strukturiert und zweckorientiert zur Verf{\"u}gung zu stellen. Der Mehrwert durch visuelle Geoanalysen, die modular in einem System integriert sind, ist das flexible Auswerten von Messdaten nach zeitlichen und r{\"a}umlichen Merkmalen.}, language = {de} } @phdthesis{Grimbs2009, author = {Grimbs, Sergio}, title = {Towards structure and dynamics of metabolic networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-32397}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {This work presents mathematical and computational approaches to cover various aspects of metabolic network modelling, especially regarding the limited availability of detailed kinetic knowledge on reaction rates. It is shown that precise mathematical formulations of problems are needed i) to find appropriate and, if possible, efficient algorithms to solve them, and ii) to determine the quality of the found approximate solutions. Furthermore, some means are introduced to gain insights on dynamic properties of metabolic networks either directly from the network structure or by additionally incorporating steady-state information. Finally, an approach to identify key reactions in a metabolic networks is introduced, which helps to develop simple yet useful kinetic models. The rise of novel techniques renders genome sequencing increasingly fast and cheap. In the near future, this will allow to analyze biological networks not only for species but also for individuals. Hence, automatic reconstruction of metabolic networks provides itself as a means for evaluating this huge amount of experimental data. A mathematical formulation as an optimization problem is presented, taking into account existing knowledge and experimental data as well as the probabilistic predictions of various bioinformatical methods. The reconstructed networks are optimized for having large connected components of high accuracy, hence avoiding fragmentation into small isolated subnetworks. The usefulness of this formalism is exemplified on the reconstruction of the sucrose biosynthesis pathway in Chlamydomonas reinhardtii. The problem is shown to be computationally demanding and therefore necessitates efficient approximation algorithms. The problem of minimal nutrient requirements for genome-scale metabolic networks is analyzed. Given a metabolic network and a set of target metabolites, the inverse scope problem has as it objective determining a minimal set of metabolites that have to be provided in order to produce the target metabolites. These target metabolites might stem from experimental measurements and therefore are known to be produced by the metabolic network under study, or are given as the desired end-products of a biotechological application. The inverse scope problem is shown to be computationally hard to solve. However, I assume that the complexity strongly depends on the number of directed cycles within the metabolic network. This might guide the development of efficient approximation algorithms. Assuming mass-action kinetics, chemical reaction network theory (CRNT) allows for eliciting conclusions about multistability directly from the structure of metabolic networks. Although CRNT is based on mass-action kinetics originally, it is shown how to incorporate further reaction schemes by emulating molecular enzyme mechanisms. CRNT is used to compare several models of the Calvin cycle, which differ in size and level of abstraction. Definite results are obtained for small models, but the available set of theorems and algorithms provided by CRNT can not be applied to larger models due to the computational limitations of the currently available implementations of the provided algorithms. Given the stoichiometry of a metabolic network together with steady-state fluxes and concentrations, structural kinetic modelling allows to analyze the dynamic behavior of the metabolic network, even if the explicit rate equations are not known. In particular, this sampling approach is used to study the stabilizing effects of allosteric regulation in a model of human erythrocytes. Furthermore, the reactions of that model can be ranked according to their impact on stability of the steady state. The most important reactions in that respect are identified as hexokinase, phosphofructokinase and pyruvate kinase, which are known to be highly regulated and almost irreversible. Kinetic modelling approaches using standard rate equations are compared and evaluated against reference models for erythrocytes and hepatocytes. The results from this simplified kinetic models can simulate acceptably the temporal behavior for small changes around a given steady state, but fail to capture important characteristics for larger changes. The aforementioned approach to rank reactions according to their influence on stability is used to identify a small number of key reactions. These reactions are modelled in detail, including knowledge about allosteric regulation, while all other reactions were still described by simplified reaction rates. These so-called hybrid models can capture the characteristics of the reference models significantly better than the simplified models alone. The resulting hybrid models might serve as a good starting point for kinetic modelling of genome-scale metabolic networks, as they provide reasonable results in the absence of experimental data, regarding, for instance, allosteric regulations, for a vast majority of enzymatic reactions.}, language = {en} } @phdthesis{Blessmann2010, author = {Bleßmann, Daniela}, title = {Der Einfluss der Dynamik auf die stratosph{\"a}rische Ozonvariabilit{\"a}t {\"u}ber der Arktis im Fr{\"u}hwinter}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51394}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Der fr{\"u}hwinterliche Ozongehalt ist ein Indikator f{\"u}r den Ozongehalt im Sp{\"a}twinter/Fr{\"u}hjahr. Jedoch weist dieser aufgrund von Absinkprozessen, chemisch bedingten Ozonabbau und Wellenaktivit{\"a}t von Jahr zu Jahr starke Schwankungen auf. Die vorliegende Arbeit zeigt, dass diese Variabilit{\"a}t weitestgehend auf dynamische Prozesse w{\"a}hrend der Wirbelbildungsphase des arktischen Polarwirbels zur{\"u}ckgeht. Ferner wird der bisher noch ausstehende Zusammenhang zwischen dem fr{\"u}h- und sp{\"a}twinterlichen Ozongehalt bez{\"u}glich Dynamik und Chemie aufgezeigt. F{\"u}r die Untersuchung des Zusammenhangs zwischen der im Polarwirbel eingeschlossenen Luftmassenzusammensetzung und Ozonmenge wurden Beobachtungsdaten von Satellitenmessinstrumenten und Ozonsonden sowie Modellsimulationen des Lagrangschen Chemie/Transportmodells ATLAS verwandt. Die {\"u}ber die Fl{\"a}che (45-75°N) und Zeit (August-November) gemittelte Vertikalkomponente des Eliassen-Palm-Flussvektors durch die 100hPa-Fl{\"a}che zeigt eine Verbindung zwischen der fr{\"u}hwinterlichen wirbelinneren Luftmassenzusammensetzung und der Wirbelbildungsphase auf. Diese ist jedoch nur f{\"u}r die untere Stratosph{\"a}re g{\"u}ltig, da die Vertikalkomponente die sich innerhalb der Stratosph{\"a}re {\"a}ndernden Wellenausbreitungsbedingungen nicht erfasst. F{\"u}r eine verbesserte H{\"o}hendarstellung des Signals wurde eine neue integrale auf der Wellenamplitude und dem Charney-Drazin-Kriterium basierende Gr{\"o}ße definiert. Diese neue Gr{\"o}ße verbindet die Wellenaktivit{\"a}t w{\"a}hrend der Wirbelbildungsphase sowohl mit der Luftmassenzusammensetzung im Polarwirbel als auch mit der Ozonverteilung {\"u}ber die Breite. Eine verst{\"a}rkte Wellenaktivit{\"a}t f{\"u}hrt zu mehr Luft aus niedrigeren ozonreichen Breiten im Polarwirbel. Aber im Herbst und Fr{\"u}hwinter zerst{\"o}ren chemische Prozesse, die das Ozon ins Gleichgewicht bringen, die interannuale wirbelinnere Ozonvariablit{\"a}t, die durch dynamische Prozesse w{\"a}hrend der arktischen Polarwirbelbildungsphase hervorgerufen wird. Eine Analyse in Hinblick auf den Fortbestand einer dynamisch induzierten Ozonanomalie bis in den Mittwinter erm{\"o}glicht eine Absch{\"a}tzung des Einflusses dieser dynamischen Prozesse auf den arktischen Ozongehalt. Zu diesem Zweck wurden f{\"u}r den Winter 1999-2000 Modelll{\"a}ufe mit dem Lagrangesche Chemie/Transportmodell ATLAS gerechnet, die detaillierte Informationen {\"u}ber den Erhalt der k{\"u}nstlichen Ozonvariabilit{\"a}t hinsichtlich Zeit, H{\"o}he und Breite liefern. Zusammengefasst, besteht die dynamisch induzierte Ozonvariabilit{\"a}t w{\"a}hrend der Wirbelbildungsphase l{\"a}nger im Inneren als im {\"A}ußeren des Polarwirbels und verliert oberhalb von 750K potentieller Temperatur ihre signifikante Wirkung auf die mittwinterliche Ozonvariabilit{\"a}t. In darunterliegenden H{\"o}henbereichen ist der Anteil an der urspr{\"u}nglichen St{\"o}rung groß, bis zu 90\% auf der 450K. Innerhalb dieses H{\"o}henbereiches {\"u}ben die dynamischen Prozesse w{\"a}hrend der Wirbelbildungsphase einen entscheidenden Einfluss auf den Ozongehalt im Mittwinter aus.}, language = {de} } @article{JeonChechkinMetzler2014, author = {Jeon, Jae-Hyung and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion}, series = {Physical chemistry, chemical physics : PCCP}, volume = {30}, journal = {Physical chemistry, chemical physics : PCCP}, number = {16}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, doi = {10.1039/C4CP02019G}, pages = {15811 -- 15817}, year = {2014}, abstract = {Anomalous diffusion is frequently described by scaled Brownian motion (SBM){,} a Gaussian process with a power-law time dependent diffusion coefficient. Its mean squared displacement is ?x2(t)? [similar{,} equals] 2K(t)t with K(t) [similar{,} equals] t[small alpha]-1 for 0 < [small alpha] < 2. SBM may provide a seemingly adequate description in the case of unbounded diffusion{,} for which its probability density function coincides with that of fractional Brownian motion. Here we show that free SBM is weakly non-ergodic but does not exhibit a significant amplitude scatter of the time averaged mean squared displacement. More severely{,} we demonstrate that under confinement{,} the dynamics encoded by SBM is fundamentally different from both fractional Brownian motion and continuous time random walks. SBM is highly non-stationary and cannot provide a physical description for particles in a thermalised stationary system. Our findings have direct impact on the modelling of single particle tracking experiments{,} in particular{,} under confinement inside cellular compartments or when optical tweezers tracking methods are used.}, language = {en} } @article{ShinCherstvyMetzler2014, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Kinetics of polymer looping with macromolecular crowding: effects of volume fraction and crowder size}, series = {Soft Matter}, journal = {Soft Matter}, editor = {Metzler, Ralf}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, pages = {472 -- 488}, year = {2014}, abstract = {The looping of polymers such as DNA is a fundamental process in the molecular biology of living cells, whose interior is characterised by a high degree of molecular crowding. We here investigate in detail the looping dynamics of flexible polymer chains in the presence of different degrees of crowding. From the analysis of the looping-unlooping rates and the looping probabilities of the chain ends we show that the presence of small crowders typically slows down the chain dynamics but larger crowders may in fact facilitate the looping. We rationalise these non-trivial and often counterintuitive effects of the crowder size on the looping kinetics in terms of an effective solution viscosity and standard excluded volume. It is shown that for small crowders the effect of an increased viscosity dominates, while for big crowders we argue that confinement effects (caging) prevail. The tradeoff between both trends can thus result in the impediment or facilitation of polymer looping, depending on the crowder size. We also examine how the crowding volume fraction, chain length, and the attraction strength of the contact groups of the polymer chain affect the looping kinetics and hairpin formation dynamics. Our results are relevant for DNA looping in the absence and presence of protein mediation, DNA hairpin formation, RNA folding, and the folding of polypeptide chains under biologically relevant high-crowding conditions.}, language = {en} } @misc{ShinCherstvyMetzler2014, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Kinetics of polymer looping with macromolecular crowding: effects of volume fraction and crowder size}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76961}, pages = {472 -- 488}, year = {2014}, abstract = {The looping of polymers such as DNA is a fundamental process in the molecular biology of living cells, whose interior is characterised by a high degree of molecular crowding. We here investigate in detail the looping dynamics of flexible polymer chains in the presence of different degrees of crowding. From the analysis of the looping-unlooping rates and the looping probabilities of the chain ends we show that the presence of small crowders typically slows down the chain dynamics but larger crowders may in fact facilitate the looping. We rationalise these non-trivial and often counterintuitive effects of the crowder size on the looping kinetics in terms of an effective solution viscosity and standard excluded volume. It is shown that for small crowders the effect of an increased viscosity dominates, while for big crowders we argue that confinement effects (caging) prevail. The tradeoff between both trends can thus result in the impediment or facilitation of polymer looping, depending on the crowder size. We also examine how the crowding volume fraction, chain length, and the attraction strength of the contact groups of the polymer chain affect the looping kinetics and hairpin formation dynamics. Our results are relevant for DNA looping in the absence and presence of protein mediation, DNA hairpin formation, RNA folding, and the folding of polypeptide chains under biologically relevant high-crowding conditions.}, language = {en} } @misc{JeonChechkinMetzler2014, author = {Jeon, Jae-Hyung and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76302}, pages = {15811 -- 15817}, year = {2014}, abstract = {Anomalous diffusion is frequently described by scaled Brownian motion (SBM){,} a Gaussian process with a power-law time dependent diffusion coefficient. Its mean squared displacement is ?x2(t)? [similar{,} equals] 2K(t)t with K(t) [similar{,} equals] t[small alpha]-1 for 0 < [small alpha] < 2. SBM may provide a seemingly adequate description in the case of unbounded diffusion{,} for which its probability density function coincides with that of fractional Brownian motion. Here we show that free SBM is weakly non-ergodic but does not exhibit a significant amplitude scatter of the time averaged mean squared displacement. More severely{,} we demonstrate that under confinement{,} the dynamics encoded by SBM is fundamentally different from both fractional Brownian motion and continuous time random walks. SBM is highly non-stationary and cannot provide a physical description for particles in a thermalised stationary system. Our findings have direct impact on the modelling of single particle tracking experiments{,} in particular{,} under confinement inside cellular compartments or when optical tweezers tracking methods are used.}, language = {en} } @phdthesis{Schroeder2016, author = {Schr{\"o}der, Henning}, title = {Ultrafast electron dynamics in Fe(CO)5 and Cr(CO)6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94589}, school = {Universit{\"a}t Potsdam}, pages = {v, 87}, year = {2016}, abstract = {In this thesis, the two prototype catalysts Fe(CO)₅ and Cr(CO)₆ are investigated with time-resolved photoelectron spectroscopy at a high harmonic setup. In both of these metal carbonyls, a UV photon can induce the dissociation of one or more ligands of the complex. The mechanism of the dissociation has been debated over the last decades. The electronic dynamics of the first dissociation occur on the femtosecond timescale. For the experiment, an existing high harmonic setup was moved to a new location, was extended, and characterized. The modified setup can induce dynamics in gas phase samples with photon energies of 1.55eV, 3.10eV, and 4.65eV. The valence electronic structure of the samples can be probed with photon energies between 20eV and 40eV. The temporal resolution is 111fs to 262fs, depending on the combination of the two photon energies. The electronically excited intermediates of the two complexes, as well as of the reaction product Fe(CO)₄, could be observed with photoelectron spectroscopy in the gas phase for the first time. However, photoelectron spectroscopy gives access only to the final ionic states. Corresponding calculations to simulate these spectra are still in development. The peak energies and their evolution in time with respect to the initiation pump pulse have been determined, these peaks have been assigned based on literature data. The spectra of the two complexes show clear differences. The dynamics have been interpreted with the assumption that the motion of peaks in the spectra relates to the movement of the wave packet in the multidimensional energy landscape. The results largely confirm existing models for the reaction pathways. In both metal carbonyls, this pathway involves a direct excitation of the wave packet to a metal-to-ligand charge transfer state and the subsequent crossing to a dissociative ligand field state. The coupling of the electronic dynamics to the nuclear dynamics could explain the slower dissociation in Fe(CO)₅ as compared to Cr(CO)₆.}, language = {en} } @misc{LevermannWinkelmann2016, author = {Levermann, Anders and Winkelmann, Ricarda}, title = {A simple equation for the melt elevation feedback of ice sheets}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {529}, issn = {1866-8372}, doi = {10.25932/publishup-40983}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409834}, pages = {9}, year = {2016}, abstract = {In recent decades, the Greenland Ice Sheet has been losing mass and has thereby contributed to global sea-level rise. The rate of ice loss is highly relevant for coastal protection worldwide. The ice loss is likely to increase under future warming. Beyond a critical temperature threshold, a meltdown of the Greenland Ice Sheet is induced by the self-enforcing feedback between its lowering surface elevation and its increasing surface mass loss: the more ice that is lost, the lower the ice surface and the warmer the surface air temperature, which fosters further melting and ice loss. The computation of this rate so far relies on complex numerical models which are the appropriate tools for capturing the complexity of the problem. By contrast we aim here at gaining a conceptual understanding by deriving a purposefully simple equation for the self-enforcing feedback which is then used to estimate the melt time for different levels of warming using three observable characteristics of the ice sheet itself and its surroundings. The analysis is purely conceptual in nature. It is missing important processes like ice dynamics for it to be useful for applications to sea-level rise on centennial timescales, but if the volume loss is dominated by the feedback, the resulting logarithmic equation unifies existing numerical simulations and shows that the melt time depends strongly on the level of warming with a critical slow-down near the threshold: the median time to lose 10\% of the present-day ice volume varies between about 3500 years for a temperature level of 0.5 degrees C above the threshold and 500 years for 5 degrees C. Unless future observations show a significantly higher melting sensitivity than currently observed, a complete meltdown is unlikely within the next 2000 years without significant ice-dynamical contributions.}, language = {en} } @misc{EhlertHolzweberLippitzetal.2016, author = {Ehlert, Christopher and Holzweber, Markus and Lippitz, Andreas and Unger, Wolfgang E. S. and Saalfrank, Peter}, title = {A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394417}, pages = {8654 -- 8661}, year = {2016}, abstract = {In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([CnC1im]+[NTf2]- and [C4C1im]+[I]-). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra.}, language = {en} }