@article{AnsmannSeyfried2020, author = {Ansmann, Moritz and Seyfried, Markus}, title = {Zwischen Anspruch und Realit{\"a}t}, series = {HDS.Journal}, volume = {2020}, journal = {HDS.Journal}, number = {1}, publisher = {Hochschuldidaktisches Zentrum Sachsen (HDS)}, address = {Leipzig}, issn = {2195-0334}, pages = {6 -- 11}, year = {2020}, abstract = {Eine evidenzbasierte Gestaltung von Studium und Lehre, wie sie heute normativ eingefordert wird, bedarf des integrierten Zusammenwirkens von Qualit{\"a}tsmanagement und Hochschuldidaktik - aber gibt es dieses in der Praxis? Mit Blick auf die allgemeine Befundlage, aber auch anhand einer eigenen empirischen Untersuchung zeigt der Beitrag diesbez{\"u}glich auf, dass Qualit{\"a}tsmanagement und Hochschuldidaktik als weitgehend desintegrierte Funktionsbereiche wahrgenommen werden und Evidenzbasierung in der Praxis folglich keinen sehr hohen Stellenwert genießt. Ausgehend von einer Ursachenanalyse wird auf die dysfunktionalen, aber auch auf die funktionalen Auswirkungen dieser Separierung aufmerksam gemacht.}, language = {de} } @article{ChujfiLaRocheMeinel2017, author = {Chujfi-La-Roche, Salim and Meinel, Christoph}, title = {Matching cognitively sympathetic individual styles to develop collective intelligence in digital communities}, series = {AI \& society : the journal of human-centred systems and machine intelligence}, volume = {35}, journal = {AI \& society : the journal of human-centred systems and machine intelligence}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0951-5666}, doi = {10.1007/s00146-017-0780-x}, pages = {5 -- 15}, year = {2017}, abstract = {Creation, collection and retention of knowledge in digital communities is an activity that currently requires being explicitly targeted as a secure method of keeping intellectual capital growing in the digital era. In particular, we consider it relevant to analyze and evaluate the empathetic cognitive personalities and behaviors that individuals now have with the change from face-to-face communication (F2F) to computer-mediated communication (CMC) online. This document proposes a cyber-humanistic approach to enhance the traditional SECI knowledge management model. A cognitive perception is added to its cyclical process following design thinking interaction, exemplary for improvement of the method in which knowledge is continuously created, converted and shared. In building a cognitive-centered model, we specifically focus on the effective identification and response to cognitive stimulation of individuals, as they are the intellectual generators and multiplicators of knowledge in the online environment. Our target is to identify how geographically distributed-digital-organizations should align the individual's cognitive abilities to promote iteration and improve interaction as a reliable stimulant of collective intelligence. The new model focuses on analyzing the four different stages of knowledge processing, where individuals with sympathetic cognitive personalities can significantly boost knowledge creation in a virtual social system. For organizations, this means that multidisciplinary individuals can maximize their extensive potential, by externalizing their knowledge in the correct stage of the knowledge creation process, and by collaborating with their appropriate sympathetically cognitive remote peers.}, language = {en} } @article{FleischerCarstens2021, author = {Fleischer, Julia and Carstens, Nora}, title = {Policy labs as arenas for boundary spanning}, series = {Public Management Review}, volume = {24}, journal = {Public Management Review}, number = {8}, publisher = {Routledge}, address = {London}, issn = {1470-1065}, doi = {10.1080/14719037.2021.1893803}, pages = {1208 -- 1225}, year = {2021}, abstract = {The recently adopted German Online Access Act triggered the creation of digitalization labs for designing digital services, bringing together federal, state, and local authorities; end-users; and private-sector actors. These labs provide opportunities for boundary spanning due to organizational field and lab features. Our comparative case studies on three digitalization labs show variations in boundary spanning and reveal lab members de-coupling from their parent organizations to a varying extent. We have concluded labs offer boundary spanning that supports safeguarding the legitimacy of innovative policy designs but also raise concerns over public accountability.}, language = {en} } @phdthesis{Teusner2021, author = {Teusner, Ralf}, title = {Situational interventions and peer feedback in massive open online courses}, doi = {10.25932/publishup-50758}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-507587}, school = {Universit{\"a}t Potsdam}, pages = {178}, year = {2021}, abstract = {Massive Open Online Courses (MOOCs) open up new opportunities to learn a wide variety of skills online and are thus well suited for individual education, especially where proffcient teachers are not available locally. At the same time, modern society is undergoing a digital transformation, requiring the training of large numbers of current and future employees. Abstract thinking, logical reasoning, and the need to formulate instructions for computers are becoming increasingly relevant. A holistic way to train these skills is to learn how to program. Programming, in addition to being a mental discipline, is also considered a craft, and practical training is required to achieve mastery. In order to effectively convey programming skills in MOOCs, practical exercises are incorporated into the course curriculum to offer students the necessary hands-on experience to reach an in-depth understanding of the programming concepts presented. Our preliminary analysis showed that while being an integral and rewarding part of courses, practical exercises bear the risk of overburdening students who are struggling with conceptual misunderstandings and unknown syntax. In this thesis, we develop, implement, and evaluate different interventions with the aim to improve the learning experience, sustainability, and success of online programming courses. Data from four programming MOOCs, with a total of over 60,000 participants, are employed to determine criteria for practical programming exercises best suited for a given audience. Based on over five million executions and scoring runs from students' task submissions, we deduce exercise difficulties, students' patterns in approaching the exercises, and potential flaws in exercise descriptions as well as preparatory videos. The primary issue in online learning is that students face a social gap caused by their isolated physical situation. Each individual student usually learns alone in front of a computer and suffers from the absence of a pre-determined time structure as provided in traditional school classes. Furthermore, online learning usually presses students into a one-size-fits-all curriculum, which presents the same content to all students, regardless of their individual needs and learning styles. Any means of a personalization of content or individual feedback regarding problems they encounter are mostly ruled out by the discrepancy between the number of learners and the number of instructors. This results in a high demand for self-motivation and determination of MOOC participants. Social distance exists between individual students as well as between students and course instructors. It decreases engagement and poses a threat to learning success. Within this research, we approach the identified issues within MOOCs and suggest scalable technical solutions, improving social interaction and balancing content difficulty. Our contributions include situational interventions, approaches for personalizing educational content as well as concepts for fostering collaborative problem-solving. With these approaches, we reduce counterproductive struggles and create a universal improvement for future programming MOOCs. We evaluate our approaches and methods in detail to improve programming courses for students as well as instructors and to advance the state of knowledge in online education. Data gathered from our experiments show that receiving peer feedback on one's programming problems improves overall course scores by up to 17\%. Merely the act of phrasing a question about one's problem improved overall scores by about 14\%. The rate of students reaching out for help was significantly improved by situational just-in-time interventions. Request for Comment interventions increased the share of students asking for help by up to 158\%. Data from our four MOOCs further provide detailed insight into the learning behavior of students. We outline additional significant findings with regard to student behavior and demographic factors. Our approaches, the technical infrastructure, the numerous educational resources developed, and the data collected provide a solid foundation for future research.}, language = {en} } @book{WaetzoldtGiese2015, author = {W{\"a}tzoldt, Sebastian and Giese, Holger}, title = {Modeling collaborations in self-adaptive systems of systems}, number = {96}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-324-4}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-73036}, publisher = {Universit{\"a}t Potsdam}, pages = {72}, year = {2015}, abstract = {An increasing demand on functionality and flexibility leads to an integration of beforehand isolated system solutions building a so-called System of Systems (SoS). Furthermore, the overall SoS should be adaptive to react on changing requirements and environmental conditions. Due SoS are composed of different independent systems that may join or leave the overall SoS at arbitrary point in times, the SoS structure varies during the systems lifetime and the overall SoS behavior emerges from the capabilities of the contained subsystems. In such complex system ensembles new demands of understanding the interaction among subsystems, the coupling of shared system knowledge and the influence of local adaptation strategies to the overall resulting system behavior arise. In this report, we formulate research questions with the focus of modeling interactions between system parts inside a SoS. Furthermore, we define our notion of important system types and terms by retrieving the current state of the art from literature. Having a common understanding of SoS, we discuss a set of typical SoS characteristics and derive general requirements for a collaboration modeling language. Additionally, we retrieve a broad spectrum of real scenarios and frameworks from literature and discuss how these scenarios cope with different characteristics of SoS. Finally, we discuss the state of the art for existing modeling languages that cope with collaborations for different system types such as SoS.}, language = {en} } @article{BerryKusterer2013, author = {Berry, Carol and Kusterer, Peter}, title = {Using Teachers' TryScience to support educators and improve teaching}, series = {Commentarii informaticae didacticae : (CID)}, journal = {Commentarii informaticae didacticae : (CID)}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64665}, pages = {161 -- 162}, year = {2013}, abstract = {The challenge is providing teachers with the resources they need to strengthen their instructions and better prepare students for the jobs of the 21st Century. Technology can help meet the challenge. Teachers' Tryscience is a noncommercial offer, developed by the New York Hall of Science, TeachEngineering, the National Board for Professional Teaching Standards and IBM Citizenship to provide teachers with such resources. The workshop provides deeper insight into this tool and discussion of how to support teaching of informatics in schools.}, language = {en} }