@phdthesis{Theuring2017, author = {Theuring, Philipp Christian}, title = {Suspended sediments in the Kharaa River, sources and impacts}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410550}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2017}, abstract = {Anthropogenically amplified erosion leads to increased fine-grained sediment input into the fluvial system in the 15.000 km2 Kharaa River catchment in northern Mongolia and constitutes a major stressing factor for the aquatic ecosystem. This study uniquely combines the application of intensive monitoring, source fingerprinting and catchment modelling techniques to allow for the comparison of the credibility and accuracy of each single method. High-resolution discharge data were used in combination with daily suspended solid measurements to calculate the suspended sediment budget and compare it with estimations of the sediment budget model SedNet. The comparison of both techniques showed that the development of an overall sediment budget with SedNet was possible, yielding results in the same order of magnitude (20.3 kt a- 1 and 16.2 kt a- 1). Radionuclide sediment tracing, using Be-7, Cs-137 and Pb-210 was applied to differentiate sediment sources for particles < 10μm from hillslope and riverbank erosion and showed that riverbank erosion generates 74.5\% of the suspended sediment load, whereas surface erosion contributes 21.7\% and gully erosion only 3.8\%. The contribution of the single subcatchments of the Kharaa to the suspended sediment load was assessed based on their variation in geochemical composition (e.g. in Ti, Sn, Mo, Mn, As, Sr, B, U, Ca and Sb). These variations were used for sediment source discrimination with geochemical composite fingerprints based on Genetic Algorithm driven Discriminant Function Analysis, the Kruskal-Wallis H-test and Principal Component Analysis. The contributions of the individual sub-catchment varied from 6.4\% to 36.2\%, generally showing higher contributions from the sub-catchments in the middle, rather than the upstream portions of the study area. The results indicate that river bank erosion generated by existing grazing practices of livestock is the main cause for elevated fine sediment input. Actions towards the protection of the headwaters and the stabilization of the river banks within the middle reaches were identified as the highest priority. Deforestation and by lodging and forest fires should be prevented to avoid increased hillslope erosion in the mountainous areas. Mining activities are of minor importance for the overall catchment sediment load but can constitute locally important point sources for particular heavy metals in the fluvial system.}, language = {en} } @article{StruckAndermannHoviusetal.2015, author = {Struck, Martin and Andermann, Christoff and Hovius, Niels and Korup, Oliver and Turowski, Jens M. and Bista, Raj and Pandit, Hari P. and Dahal, Ranjan K.}, title = {Monsoonal hillslope processes determine grain size-specific suspended sediment fluxes in a trans-Himalayan river}, series = {Geophysical research letters}, volume = {42}, journal = {Geophysical research letters}, number = {7}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2015GL063360}, pages = {2302 -- 2308}, year = {2015}, abstract = {Sediments in rivers record the dynamics of erosion processes. While bulk sediment fluxes are easily and routinely obtained, sediment caliber remains underexplored when inferring erosion mechanisms. Yet sediment grain size distributions may be the key to discriminating their origin. We have studied grain size-specific suspended sediment fluxes in the Kali Gandaki, a major trans-Himalayan river. Two strategically located gauging stations enable tracing of sediment caliber on either side of the Himalayan orographic barrier. The data show that fine sediment input into the northern headwaters is persistent, while coarse sediment comes from the High Himalayas during the summer monsoon. A temporally matching landslide inventory similarly indicates the prominence of monsoon-driven hillslope mass wasting. Thus, mechanisms of sediment supply can leave strong traces in the fluvial caliber, which could project well beyond the mountain front and add to the variability of the sedimentary record of orogen erosion.}, language = {en} } @article{IroumeCareyBronstertetal.2011, author = {Iroume, Andres and Carey, Patricio and Bronstert, Axel and Huber, Anton and Palacios, Hardin}, title = {GIS application of USLE and MUSLE to estimate erosion and suspended sediment load in experimental catchments, Valdivia, Chile}, series = {Revista t{\´e}cnica de la Facultad de Ingenieria}, volume = {34}, journal = {Revista t{\´e}cnica de la Facultad de Ingenieria}, number = {2}, publisher = {Facultad de Ingenieria Universidad del Zulia}, address = {Maracaibo}, issn = {0254-0770}, pages = {119 -- 128}, year = {2011}, abstract = {This paper presents the results of a research aimed to quantify suspended sediment transport in three experimental catchments in southern Chile, to compare measured suspended sediment load with estimated erosion using the Universal Soil Loss Equation (USLE) applied in a GIS environment and to validate de Modified Universal Soil Loss Equation (MUSLE) used to estimate suspended sediment loads from forest catchments. The catchments are Los Pinos (94.2 ha), Los Ulmos 1 (12.6 ha) and Los Ulmos 2 (17.7 ha). Soil losses estimated with USLE for the three catchments are higher than those measured in runoff experimental lots under bare soil conditions, which could indicate an overestimation of the LS calculated in GIS and the fact that the USLE model does not compute sediment deposit and storage within the catchment. A statistical significant relation was found between measured and estimated (MUSLE) suspended sediment load, which would indicate that this model could be applied to estimate suspended sediment load from small catchments in southern Chile.}, language = {es} }