@misc{GuljamowBarchewitzGrosseetal.2021, author = {Guljamow, Arthur and Barchewitz, Tino and Große, Rebecca and Timm, Stefan and Hagemann, Martin and Dittmann, Elke}, title = {Diel Variations of Extracellular Microcystin Influence the Subcellular Dynamics of RubisCO in Microcystis aeruginosa PCC 7806}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1154}, issn = {1866-8372}, doi = {10.25932/publishup-52128}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-521287}, pages = {16}, year = {2021}, abstract = {The ubiquitous freshwater cyanobacterium Microcystis is remarkably successful, showing a high tolerance against fluctuations in environmental conditions. It frequently forms dense blooms which can accumulate significant amounts of the hepatotoxin microcystin, which plays an extracellular role as an infochemical but also acts intracellularly by interacting with proteins of the carbon metabolism, notably with the CO2 fixing enzyme RubisCO. Here we demonstrate a direct link between external microcystin and its intracellular targets. Monitoring liquid cultures of Microcystis in a diel experiment revealed fluctuations in the extracellular microcystin content that correlate with an increase in the binding of microcystin to intracellular proteins. Concomitantly, reversible relocation of RubisCO from the cytoplasm to the cell's periphery was observed. These variations in RubisCO localization were especially pronounced with cultures grown at higher cell densities. We replicated these effects by adding microcystin externally to cultures grown under continuous light. Thus, we propose that microcystin may be part of a fast response to conditions of high light and low carbon that contribute to the metabolic flexibility and the success of Microcystis in the field.}, language = {en} } @article{GuljamowBarchewitzGrosseetal.2021, author = {Guljamow, Arthur and Barchewitz, Tino and Große, Rebecca and Timm, Stefan and Hagemann, Martin and Dittmann, Elke}, title = {Diel Variations of Extracellular Microcystin Influence the Subcellular Dynamics of RubisCO in Microcystis aeruginosa PCC 7806}, series = {Microorganisms : open access journal}, volume = {9}, journal = {Microorganisms : open access journal}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2076-2607}, doi = {10.3390/microorganisms9061265}, pages = {14}, year = {2021}, abstract = {The ubiquitous freshwater cyanobacterium Microcystis is remarkably successful, showing a high tolerance against fluctuations in environmental conditions. It frequently forms dense blooms which can accumulate significant amounts of the hepatotoxin microcystin, which plays an extracellular role as an infochemical but also acts intracellularly by interacting with proteins of the carbon metabolism, notably with the CO2 fixing enzyme RubisCO. Here we demonstrate a direct link between external microcystin and its intracellular targets. Monitoring liquid cultures of Microcystis in a diel experiment revealed fluctuations in the extracellular microcystin content that correlate with an increase in the binding of microcystin to intracellular proteins. Concomitantly, reversible relocation of RubisCO from the cytoplasm to the cell's periphery was observed. These variations in RubisCO localization were especially pronounced with cultures grown at higher cell densities. We replicated these effects by adding microcystin externally to cultures grown under continuous light. Thus, we propose that microcystin may be part of a fast response to conditions of high light and low carbon that contribute to the metabolic flexibility and the success of Microcystis in the field.}, language = {en} } @article{BarchewitzGuljamowMeissneretal.2019, author = {Barchewitz, Tino and Guljamow, Arthur and Meißner, Sven and Timm, Stefan and Henneberg, Manja and Baumann, Otto and Hagemann, Martin and Dittmann, Elke}, title = {Non-canonical localization of RubisCO under high-light conditions in the toxic cyanobacterium Microcystis aeruginosa PCC7806}, series = {Environmental microbiology}, volume = {21}, journal = {Environmental microbiology}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {1462-2912}, doi = {10.1111/1462-2920.14837}, pages = {4836 -- 4851}, year = {2019}, abstract = {The frequent production of the hepatotoxin microcystin (MC) and its impact on the lifestyle of bloom-forming cyanobacteria are poorly understood. Here, we report that MC interferes with the assembly and the subcellular localization of RubisCO, in Microcystis aeruginosa PCC7806. Immunofluorescence, electron microscopic and cellular fractionation studies revealed a pronounced heterogeneity in the subcellular localization of RubisCO. At high cell density, RubisCO particles are largely separate from carboxysomes in M. aeruginosa and relocate to the cytoplasmic membrane under high-light conditions. We hypothesize that the binding of MC to RubisCO promotes its membrane association and enables an extreme versatility of the enzyme. Steady-state levels of the RubisCO CO2 fixation product 3-phosphoglycerate are significantly higher in the MC-producing wild type. We also detected noticeable amounts of the RubisCO oxygenase reaction product secreted into the medium that may support the mutual interaction of M. aeruginosa with its heterotrophic microbial community.}, language = {en} } @article{HuegeGoetzeSchwarzetal.2011, author = {Huege, Jan and Goetze, Jan and Schwarz, Doreen and Bauwe, Hermann and Hagemann, Martin and Kopka, Joachim}, title = {Modulation of the major Paths of Carbon in photorespiratory mutants of synechocystis}, series = {PLoS one}, volume = {6}, journal = {PLoS one}, number = {1}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0016278}, pages = {12}, year = {2011}, abstract = {Background: Recent studies using transcript and metabolite profiles of wild-type and gene deletion mutants revealed that photorespiratory pathways are essential for the growth of Synechocystis sp. PCC 6803 under atmospheric conditions. Pool size changes of primary metabolites, such as glycine and glycolate, indicated a link to photorespiration. Methodology/Principal Findings: The (13)C labelling kinetics of primary metabolites were analysed in photoautotrophically grown cultures of Synechocystis sp. PCC 6803 by gas chromatography-mass spectrometry (GC-MS) to demonstrate the link with photorespiration. Cells pre-acclimated to high CO(2) (5\%, HC) or limited CO(2) (0.035\%, LC) conditions were pulse-labelled under very high (2\% w/w) (13)C-NaHCO(3) (VHC) conditions followed by treatment with ambient (12)C at HC and LC conditions, respectively. The (13)C enrichment, relative changes in pool size, and (13)C flux of selected metabolites were evaluated. We demonstrate two major paths of CO(2) assimilation via Rubisco in Synechocystis, i.e., from 3PGA via PEP to aspartate, malate and citrate or, to a lesser extent, from 3PGA via glucose-6-phosphate to sucrose. The results reveal evidence of carbon channelling from 3PGA to the PEP pool. Furthermore, (13)C labelling of glycolate was observed under conditions thought to suppress photorespiration. Using the glycolate-accumulating Delta glcD1 mutant, we demonstrate enhanced (13)C partitioning into the glycolate pool under conditions favouring photorespiration and enhanced (13)C partitioning into the glycine pool of the glycine-accumulating Delta gcvT mutant. Under LC conditions, the photorespiratory mutants Delta glcD1 and Delta gcvT showed enhanced activity of the additional carbon-fixing PEP carboxylase pathway. Conclusions/Significance: With our approach of non-steady-state (13)C labelling and analysis of metabolite pool sizes with respective (13)C enrichments, we identify the use and modulation of major pathways of carbon assimilation in Synechocystis in the presence of high and low inorganic carbon supplies.}, language = {en} } @article{ZilligesKehrMeissneretal.2011, author = {Zilliges, Yvonne and Kehr, Jan-Christoph and Meissner, Sven and Ishida, Keishi and Mikkat, Stefan and Hagemann, Martin and Kaplan, Aaron and B{\"o}rner, Thomas and Dittmann-Th{\"u}nemann, Elke}, title = {The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of microcystis under oxidative stress conditions}, series = {PLoS one}, volume = {6}, journal = {PLoS one}, number = {3}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0017615}, pages = {11}, year = {2011}, abstract = {Microcystins are cyanobacterial toxins that represent a serious threat to drinking water and recreational lakes worldwide. Here, we show that microcystin fulfils an important function within cells of its natural producer Microcystis. The microcystin deficient mutant Delta mcyB showed significant changes in the accumulation of proteins, including several enzymes of the Calvin cycle, phycobiliproteins and two NADPH-dependent reductases. We have discovered that microcystin binds to a number of these proteins in vivo and that the binding is strongly enhanced under high light and oxidative stress conditions. The nature of this binding was studied using extracts of a microcystin-deficient mutant in vitro. The data obtained provided clear evidence for a covalent interaction of the toxin with cysteine residues of proteins. A detailed investigation of one of the binding partners, the large subunit of RubisCO showed a lower susceptibility to proteases in the presence of microcystin in the wild type. Finally, the mutant defective in microcystin production exhibited a clearly increased sensitivity under high light conditions and after hydrogen peroxide treatment. Taken together, our data suggest a protein-modulating role for microcystin within the producing cell, which represents a new addition to the catalogue of functions that have been discussed for microbial secondary metabolites.}, language = {en} } @article{VossBolhuisFeweretal.2013, author = {Voss, Bj{\"o}rn and Bolhuis, Henk and Fewer, David P. and Kopf, Matthias and M{\"o}ke, Fred and Haas, Fabian and El-Shehawy, Rehab and Hayes, Paul and Bergman, Birgitta and Sivonen, Kaarina and Dittmann-Th{\"u}nemann, Elke and Scanlan, Dave J. and Hagemann, Martin and Stal, Lucas J. and Hess, Wolfgang R.}, title = {Insights into the physiology and ecology of the brackish-water-adapted cyanobacterium nodularia spumigena CCY9414 based on a genome-transcriptome analysis}, series = {PLoS one}, volume = {8}, journal = {PLoS one}, number = {3}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0060224}, pages = {22}, year = {2013}, abstract = {Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4\% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems.}, language = {en} }