@article{ManningGossnerBossdorfetal.2015, author = {Manning, Pete and Gossner, Martin M. and Bossdorf, Oliver and Allan, Eric and Zhang, Yuan-Ye and Prati, Daniel and Bl{\"u}thgen, Nico and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and H{\"o}lzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Klein, Alexandra Maria and Kleinebecker, Till and Krauss, Jochen and Lange, Markus and M{\"u}ller, J{\"o}rg and Pasalic, Esther and Socher, Stephanie A. and Tschapka, Marco and T{\"u}rke, Manfred and Weiner, Christiane and Werner, Michael and Gockel, Sonja and Hemp, Andreas and Renner, Swen C. and Wells, Konstans and Buscot, Francois and Kalko, Elisabeth K. V. and Linsenmair, Karl Eduard and Weisser, Wolfgang W. and Fischer, Markus}, title = {Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa}, series = {Ecology : a publication of the Ecological Society of America}, volume = {96}, journal = {Ecology : a publication of the Ecological Society of America}, number = {6}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, doi = {10.1890/14-1307.1}, pages = {1492 -- 1501}, year = {2015}, abstract = {Land-use intensification is a key driver of biodiversity change. However, little is known about how it alters relationships between the diversities of different taxonomic groups, which are often correlated due to shared environmental drivers and trophic interactions. Using data from 150 grassland sites, we examined how land-use intensification (increased fertilization, higher livestock densities, and increased mowing frequency) altered correlations between the species richness of 15 plant, invertebrate, and vertebrate taxa. We found that 54\% of pairwise correlations between taxonomic groups were significant and positive among all grasslands, while only one was negative. Higher land-use intensity substantially weakened these correlations(35\% decrease in rand 43\% fewer significant pairwise correlations at high intensity), a pattern which may emerge as a result of biodiversity declines and the breakdown of specialized relationships in these conditions. Nevertheless, some groups (Coleoptera, Heteroptera, Hymenoptera and Orthoptera) were consistently correlated with multidiversity, an aggregate measure of total biodiversity comprised of the standardized diversities of multiple taxa, at both high and lowland-use intensity. The form of intensification was also important; increased fertilization and mowing frequency typically weakened plant-plant and plant-primary consumer correlations, whereas grazing intensification did not. This may reflect decreased habitat heterogeneity under mowing and fertilization and increased habitat heterogeneity under grazing. While these results urge caution in using certain taxonomic groups to monitor impacts of agricultural management on biodiversity, they also suggest that the diversities of some groups are reasonably robust indicators of total biodiversity across a range of conditions.}, language = {en} } @misc{SonnemannPfestorfJeltschetal.2015, author = {Sonnemann, Ilja and Pfestorf, Hans and Jeltsch, Florian and Wurst, Susanne}, title = {Community- weighted mean plant traits predict small scale distribution of insect root herbivore abundance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {494}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408161}, pages = {14}, year = {2015}, abstract = {Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43\%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive-and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity.}, language = {en} } @article{SorkauBochBoeddinghausetal.2018, author = {Sorkau, Elisabeth and Boch, Steffen and Boeddinghaus, Runa S. and Bonkowski, Michael and Fischer, Markus and Kandeler, Ellen and Klaus, Valentin H. and Kleinebecker, Till and Marhan, Sven and M{\"u}ller, J{\"o}rg and Prati, Daniel and Schoening, Ingo and Schrumpf, Marion and Weinert, Jan and Oelmann, Yvonne}, title = {The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils}, series = {Journal of plant nutrition and soil science = Zeitschrift f{\"u}r Pflanzenern{\"a}hrung und Bodenkunde}, volume = {181}, journal = {Journal of plant nutrition and soil science = Zeitschrift f{\"u}r Pflanzenern{\"a}hrung und Bodenkunde}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1436-8730}, doi = {10.1002/jpln.201700082}, pages = {185 -- 197}, year = {2018}, abstract = {Management intensity modifies soil properties, e.g., organic carbon (C-org) concentrations and soil pH with potential feedbacks on plant diversity. These changes might influence microbial P concentrations (P-mic) in soil representing an important component of the Pcycle. Our objectives were to elucidate whether abiotic and biotic variables controlling P-mic concentrations in soil are the same for forests and grasslands, and to assess the effect of region and management on P-mic concentrations in forest and grassland soils as mediated by the controlling variables. In three regions of Germany, Schwabische Alb, Hanich-Dun, and Schorfheide-Chorin, we studied forest and grassland plots (each n=150) differing in plant diversity and land-use intensity. In contrast to controls of microbial biomass carbon (C-mic), P-mic was strongly influenced by soil pH, which in turn affected phosphorus (P) availability and thus microbial Puptake in forest and grassland soils. Furthermore, P-mic concentrations in forest and grassland soils increased with increasing plant diversity. Using structural equation models, we could show that soil C-org is the profound driver of plant diversity effects on P-mic in grasslands. For both forest and grassland, we found regional differences in P-mic attributable to differing environmental conditions (pH, soil moisture). Forest management and tree species showed no effect on P-mic due to a lack of effects on controlling variables (e.g., C-org). We also did not find management effects in grassland soils which might be caused by either compensation of differently directed effects across sites or by legacy effects of former fertilization constraining the relevance of actual practices. We conclude that variables controlling P-mic or C-mic in soil differ in part and that regional differences in controlling variables are more important for P-mic in soil than those induced by management.}, language = {en} } @article{JaenickeGoddardSteinetal.2022, author = {J{\"a}nicke, Clemens and Goddard, Adam and Stein, Susanne and Steinmann, Horst-Henning and Lakes, Tobia and Nendel, Claas and M{\"u}ller, Daniel}, title = {Field-level land-use data reveal heterogeneous crop sequences with distinct regional differences in Germany}, series = {European journal of agronomy}, volume = {141}, journal = {European journal of agronomy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1161-0301}, doi = {10.1016/j.eja.2022.126632}, pages = {12}, year = {2022}, abstract = {Crop cultivation intensifies globally, which can jeopardize biodiversity and the resilience of cropping systems. We investigate changes in crop rotations as one intensification metric for half of the croplands in Germany with annual field-level land-use data from 2005 to 2018. We proxy crop rotations with crop sequences and compare how these sequences changed among three seven-year periods. The results reveal an overall high diversity of crop sequences in Germany. Half of the cropland has crop sequences with four or more crops within a seven-year period, while continuous cultivation of the same crop is present on only 2\% of the cropland. Larger farms tend to have more diverse crop sequences and organic farms have lower shares of cereal crops. In three federal states, crop rotations became less structurally diverse over time, i.e. the number of crops and the number of changes between crops decreased. In one state, structural diversity increased and the proportion of monocropping decreased. The functional diversity of the crop sequences, which measures the share of winter and spring crops as well as the share of leaf and cereal crops per sequence, remained largely stable. Trends towards cereal-or leaf -crop dominated sequences varied between the states, and no clear overall dynamic could be observed. However, the share of winter crops per sequence decreased in all four federal states. Quantifying the dynamics of crop sequences at the field level is an important metric of land-use intensity and can reveal the patterns of land-use intensification.}, language = {en} }