@article{GrumBenderAlfaetal.2018, author = {Grum, Marcus and Bender, Benedict and Alfa, A. S. and Gronau, Norbert}, title = {A decision maxim for efficient task realization within analytical network infrastructures}, series = {Decision support systems : DSS ; the international journal}, volume = {112}, journal = {Decision support systems : DSS ; the international journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-9236}, doi = {10.1016/j.dss.2018.06.005}, pages = {48 -- 59}, year = {2018}, abstract = {Faced with the increasing needs of companies, optimal dimensioning of IT hardware is becoming challenging for decision makers. In terms of analytical infrastructures, a highly evolutionary environment causes volatile, time dependent workloads in its components, and intelligent, flexible task distribution between local systems and cloud services is attractive. With the aim of developing a flexible and efficient design for analytical infrastructures, this paper proposes a flexible architecture model, which allocates tasks following a machine-specific decision heuristic. A simulation benchmarks this system with existing strategies and identifies the new decision maxim as superior in a first scenario-based simulation.}, language = {en} } @phdthesis{Panzer2024, author = {Panzer, Marcel}, title = {Design of a hyper-heuristics based control framework for modular production systems}, doi = {10.25932/publishup-63300}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-633006}, school = {Universit{\"a}t Potsdam}, pages = {vi, 334}, year = {2024}, abstract = {Volatile supply and sales markets, coupled with increasing product individualization and complex production processes, present significant challenges for manufacturing companies. These must navigate and adapt to ever-shifting external and internal factors while ensuring robustness against process variabilities and unforeseen events. This has a pronounced impact on production control, which serves as the operational intersection between production planning and the shop- floor resources, and necessitates the capability to manage intricate process interdependencies effectively. Considering the increasing dynamics and product diversification, alongside the need to maintain constant production performances, the implementation of innovative control strategies becomes crucial. In recent years, the integration of Industry 4.0 technologies and machine learning methods has gained prominence in addressing emerging challenges in production applications. Within this context, this cumulative thesis analyzes deep learning based production systems based on five publications. Particular attention is paid to the applications of deep reinforcement learning, aiming to explore its potential in dynamic control contexts. Analysis reveal that deep reinforcement learning excels in various applications, especially in dynamic production control tasks. Its efficacy can be attributed to its interactive learning and real-time operational model. However, despite its evident utility, there are notable structural, organizational, and algorithmic gaps in the prevailing research. A predominant portion of deep reinforcement learning based approaches is limited to specific job shop scenarios and often overlooks the potential synergies in combined resources. Furthermore, it highlights the rare implementation of multi-agent systems and semi-heterarchical systems in practical settings. A notable gap remains in the integration of deep reinforcement learning into a hyper-heuristic. To bridge these research gaps, this thesis introduces a deep reinforcement learning based hyper- heuristic for the control of modular production systems, developed in accordance with the design science research methodology. Implemented within a semi-heterarchical multi-agent framework, this approach achieves a threefold reduction in control and optimisation complexity while ensuring high scalability, adaptability, and robustness of the system. In comparative benchmarks, this control methodology outperforms rule-based heuristics, reducing throughput times and tardiness, and effectively incorporates customer and order-centric metrics. The control artifact facilitates a rapid scenario generation, motivating for further research efforts and bridging the gap to real-world applications. The overarching goal is to foster a synergy between theoretical insights and practical solutions, thereby enriching scientific discourse and addressing current industrial challenges.}, language = {en} }