@phdthesis{Ehrlich2019, author = {Ehrlich, Elias}, title = {On the role of trade-offs in predator-prey interactions}, doi = {10.25932/publishup-43063}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430631}, school = {Universit{\"a}t Potsdam}, pages = {192}, year = {2019}, abstract = {Predation drives coexistence, evolution and population dynamics of species in food webs, and has strong impacts on related ecosystem functions (e.g. primary production). The effect of predation on these processes largely depends on the trade-offs between functional traits in the predator and prey community. Trade-offs between defence against predation and competitive ability, for example, allow for prey speciation and predator-mediated coexistence of prey species with different strategies (defended or competitive), which may stabilize the overall food web dynamics. While the importance of such trade-offs for coexistence is widely known, we lack an understanding and the empirical evidence of how the variety of differently shaped trade-offs at multiple trophic levels affect biodiversity, trait adaptation and biomass dynamics in food webs. Such mechanistic understanding is crucial for predictions and management decisions that aim to maintain biodiversity and the capability of communities to adapt to environmental change ensuring their persistence. In this dissertation, after a general introduction to predator-prey interactions and tradeoffs, I first focus on trade-offs in the prey between qualitatively different types of defence (e.g. camouflage or escape behaviour) and their costs. I show that these different types lead to different patterns of predator-mediated coexistence and population dynamics, by using a simple predator-prey model. In a second step, I elaborate quantitative aspects of trade-offs and demonstrates that the shape of the trade-off curve in combination with trait-fitness relationships strongly affects competition among different prey types: Either specialized species with extreme trait combinations (undefended or completely defended) coexist, or a species with an intermediate defence level dominates. The developed theory on trade-off shapes and coexistence is kept general, allowing for applications apart from defence-competitiveness trade-offs. Thirdly, I tested the theory on trade-off shapes on a long-term field data set of phytoplankton from Lake Constance. The measured concave trade-off between defence and growth governs seasonal trait changes of phytoplankton in response to an altering grazing pressure by zooplankton, and affects the maintenance of trait variation in the community. In a fourth step, I analyse the interplay of different tradeoffs at multiple trophic levels with plankton data of Lake Constance and a corresponding tritrophic food web model. The results show that the trait and biomass dynamics of the different three trophic levels are interrelated in a trophic biomass-trait cascade, leading to unintuitive patterns of trait changes that are reversed in comparison to predictions from bitrophic systems. Finally, in the general discussion, I extract main ideas on trade-offs in multitrophic systems, develop a graphical theory on trade-off-based coexistence, discuss the interplay of intra- and interspecific trade-offs, and end with a management-oriented view on the results of the dissertation, describing how food webs may respond to future global changes, given their trade-offs.}, language = {en} } @article{SchaelickeHeimMartinCreuzburgetal.2020, author = {Sch{\"a}licke, Svenja and Heim, Silvia and Martin-Creuzburg, Dominik and Wacker, Alexander}, title = {Inter- and intraspecific differences in rotifer fatty acid composition during acclimation to low-quality food}, series = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, volume = {375}, journal = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, number = {1804}, publisher = {Royal Society}, address = {London}, issn = {0962-8436}, doi = {10.1098/rstb.2019.0644}, pages = {8}, year = {2020}, abstract = {Biochemical food quality constraints affect the performance of consumers and mediate trait variation among and within consumer species. To assess inter- and intraspecific differences in fatty acid retention and conversion in freshwater rotifers, we provided four strains of two closely related rotifer species,Brachionus calyciflorussensustricto andBrachionus fernandoi, with food algae differing in their fatty acid composition. The rotifers grazed for 5 days on eitherNannochloropsis limneticaorMonoraphidium minutum, two food algae with distinct polyunsaturated fatty acid (PUFA) profiles, before the diets were switched to PUFA-freeSynechococcus elongatus, which was provided for three more days. We found between- and within-species differences in rotifer fatty acid compositions on the respective food sources and, in particular, highly specific acclimation reactions to the PUFA-free diet. The different reactions indicate inter- but also intraspecific differences in physiological traits, such as PUFA retention, allocation and bioconversion capacities, within the genusBrachionusthat are most likely accompanied by differences in their nutritional demands. Our data suggest that biochemical food quality constraints act differently on traits of closely related species and of strains of a particular species and thus might be involved in shaping ecological interactions and evolutionary processes. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.}, language = {en} } @phdthesis{Ceulemans2021, author = {Ceulemans, Ruben}, title = {Diversity effects on ecosystem functions of tritrophic food webs}, doi = {10.25932/publishup-50325}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-503259}, school = {Universit{\"a}t Potsdam}, pages = {vii, 166}, year = {2021}, abstract = {There is a general consensus that diverse ecological communities are better equipped to adapt to changes in their environment, but our understanding of the mechanisms by which they do so remains incomplete. Accurately predicting how the global biodiversity crisis affects the functioning of ecosystems, and the services they provide, requires extensive knowledge about these mechanisms. Mathematical models of food webs have been successful in uncovering many aspects of the link between diversity and ecosystem functioning in small food web modules, containing at most two adaptive trophic levels. Meaningful extrapolation of this understanding to the functioning of natural food webs remains difficult, due to the presence of complex interactions that are not always accurately captured by bitrophic descriptions of food webs. In this dissertation, we expand this approach to tritrophic food web models by including the third trophic level. Using a functional trait approach, coexistence of all species is ensured using fitness-balancing trade-offs. For example, the defense-growth trade-off implies that species may be defended against predation, but this defense comes at the cost of a lower maximal growth rate. In these food webs, the functional diversity on a given trophic level can be varied by modifying the trait differences between the species on that level. In the first project, we find that functional diversity promotes high biomass on the top level, which, in turn, leads to a reduction in the temporal variability due to compensatory dynamical patterns governed by the top level. Next, these results are generalized by investigating the average behavior of tritrophic food webs, for wide intervals of all parameters describing species interactions in the food web. We find that the diversity on the top level is most important for determining the biomass and temporal variability of all other trophic levels, and show how biomass is only transferred efficiently to the top level when diversity is high everywhere in the food web. In the third project, we compare the response of a simple food chain against a nutrient pulse perturbation, to that of a food web with diversity on every trophic level. By joint consideration of the resistance, resilience, and elasticity, we uncover that the response is efficiently buffered when biomass on the top level is high, which is facilitated by functional diversity on every trophic level in the food web. Finally, in the fourth project, we show that even in a simple consumer-resource model without any diversity, top-down control on the intermediate level frequently causes the phase difference between the intermediate and basal level to deviate from the quarter-cycle lag rule. By adding a top predator, we show that these deviations become even more likely, and anti-phase cycles are often observed. The combined results of these projects show how the properties of the top trophic level, including its functional diversity, have a decisive influence on the functioning of tritrophic food webs from a mechanistic perspective. Because top species are often among the most vulnerable to extinction, our results emphasize the importance of their conservation in ecosystem management and restoration strategies.}, language = {en} }