@phdthesis{Fleischhauer2013, author = {Fleischhauer, Elisabeth}, title = {Morphological processing in children : an experimental study of German past participles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70581}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {An important strand of research has investigated the question of how children acquire a morphological system using offline data from spontaneous or elicited child language. Most of these studies have found dissociations in how children apply regular and irregular inflection (Marcus et al. 1992, Weyerts \& Clahsen 1994, Rothweiler \& Clahsen 1993). These studies have considerably deepened our understanding of how linguistic knowledge is acquired and organised in the human mind. Their methodological procedures, however, do not involve measurements of how children process morphologically complex forms in real time. To date, little is known about how children process inflected word forms. The aim of this study is to investigate children's processing of inflected words in a series of on-line reaction time experiments. We used a cross-modal priming experiment to test for decompositional effects on the central level. We used a speeded production task and a lexical decision task to test for frequency effects on access level in production and recognition. Children's behaviour was compared to adults' behaviour towards three participle types (-t participles, e.g. getanzt 'danced' vs. -n participles with stem change, e.g. gebrochen 'broken' vs.-n participles without stem change, e.g. geschlafen 'slept'). For the central level, results indicate that -t participles but not -n participles have decomposed representations. For the access level, results indicate that -t participles are represented according to their morphemes and additionally as full forms, at least from the age of nine years onwards (Pinker 1999 and Clahsen et al. 2004). Further evidence suggested that -n participles are represented as full-form entries on access level and that -n participles without stem change may encode morphological structure (cf. Clahsen et al. 2003). Out data also suggests that processing strategies for -t participles are differently applied in recognition and production. These results provide evidence that children (within the age range tested) employ the same mechanisms for processing participles as adults. The child lexicon grows as children form additional full-form representations for -t participles on access level and elaborate their full-form lexical representations of -n participles on central level. These results are consistent with processing as explained in dual-system theories.}, language = {en} } @phdthesis{Pingel2013, author = {Pingel, Patrick}, title = {Morphology, charge transport properties, and molecular doping of thiophene-based organic semiconducting thin films}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69805}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Organic semiconductors combine the benefits of organic materials, i.e., low-cost production, mechanical flexibility, lightweight, and robustness, with the fundamental semiconductor properties light absorption, emission, and electrical conductivity. This class of material has several advantages over conventional inorganic semiconductors that have led, for instance, to the commercialization of organic light-emitting diodes which can nowadays be found in the displays of TVs and smartphones. Moreover, organic semiconductors will possibly lead to new electronic applications which rely on the unique mechanical and electrical properties of these materials. In order to push the development and the success of organic semiconductors forward, it is essential to understand the fundamental processes in these materials. This thesis concentrates on understanding how the charge transport in thiophene-based semiconductor layers depends on the layer morphology and how the charge transport properties can be intentionally modified by doping these layers with a strong electron acceptor. By means of optical spectroscopy, the layer morphologies of poly(3-hexylthiophene), P3HT, P3HT-fullerene bulk heterojunction blends, and oligomeric polyquaterthiophene, oligo-PQT-12, are studied as a function of temperature, molecular weight, and processing conditions. The analyses rely on the decomposition of the absorption contributions from the ordered and the disordered parts of the layers. The ordered-phase spectra are analyzed using Spano's model. It is figured out that the fraction of aggregated chains and the interconnectivity of these domains is fundamental to a high charge carrier mobility. In P3HT layers, such structures can be grown with high-molecular weight, long P3HT chains. Low and medium molecular weight P3HT layers do also contain a significant amount of chain aggregates with high intragrain mobility; however, intergranular connectivity and, therefore, efficient macroscopic charge transport are absent. In P3HT-fullerene blend layers, a highly crystalline morphology that favors the hole transport and the solar cell efficiency can be induced by annealing procedures and the choice of a high-boiling point processing solvent. Based on scanning near-field and polarization optical microscopy, the morphology of oligo-PQT-12 layers is found to be highly crystalline which explains the rather high field-effect mobility in this material as compared to low molecular weight polythiophene fractions. On the other hand, crystalline dislocations and grain boundaries are identified which clearly limit the charge carrier mobility in oligo-PQT-12 layers. The charge transport properties of organic semiconductors can be widely tuned by molecular doping. Indeed, molecular doping is a key to highly efficient organic light-emitting diodes and solar cells. Despite this vital role, it is still not understood how mobile charge carriers are induced into the bulk semiconductor upon the doping process. This thesis contains a detailed study of the doping mechanism and the electrical properties of P3HT layers which have been p-doped by the strong molecular acceptor tetrafluorotetracyanoquinodimethane, F4TCNQ. The density of doping-induced mobile holes, their mobility, and the electrical conductivity are characterized in a broad range of acceptor concentrations. A long-standing debate on the nature of the charge transfer between P3HT and F4TCNQ is resolved by showing that almost every F4TCNQ acceptor undergoes a full-electron charge transfer with a P3HT site. However, only 5\% of these charge transfer pairs can dissociate and induce a mobile hole into P3HT which contributes electrical conduction. Moreover, it is shown that the left-behind F4TCNQ ions broaden the density-of-states distribution for the doping-induced mobile holes, which is due to the longrange Coulomb attraction in the low-permittivity organic semiconductors.}, language = {en} }