@article{KralemannPikovskijRosenblum2014, author = {Kralemann, Bjoern and Pikovskij, Arkadij and Rosenblum, Michael}, title = {Reconstructing effective phase connectivity of oscillator networks from observations}, series = {New journal of physics : the open-access journal for physics}, volume = {16}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/8/085013}, pages = {21}, year = {2014}, abstract = {We present a novel approach for recovery of the directional connectivity of a small oscillator network by means of the phase dynamics reconstruction from multivariate time series data. The main idea is to use a triplet analysis instead of the traditional pairwise one. Our technique reveals an effective phase connectivity which is generally not equivalent to a structural one. We demonstrate that by comparing the coupling functions from all possible triplets of oscillators, we are able to achieve in the reconstruction a good separation between existing and non-existing connections, and thus reliably reproduce the network structure.}, language = {en} } @phdthesis{Cecchini2019, author = {Cecchini, Gloria}, title = {Improving network inference by overcoming statistical limitations}, doi = {10.25932/publishup-42670}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426705}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2019}, abstract = {A reliable inference of networks from data is of key interest in many scientific fields. Several methods have been suggested in the literature to reliably determine links in a network. These techniques rely on statistical methods, typically controlling the number of false positive links, but not considering false negative links. In this thesis new methodologies to improve network inference are suggested. Initial analyses demonstrate the impact of falsepositive and false negative conclusions about the presence or absence of links on the resulting inferred network. Consequently, revealing the importance of making well-considered choices leads to suggest new approaches to enhance existing network reconstruction methods. A simulation study, presented in Chapter 3, shows that different values to balance false positive and false negative conclusions about links should be used in order to reliably estimate network characteristics. The existence of type I and type II errors in the reconstructed network, also called biased network, is accepted. Consequently, an analytic method that describes the influence of these two errors on the network structure is explored. As a result of this analysis, an analytic formula of the density of the biased vertex degree distribution is found (Chapter 4). In the inverse problem, the vertex degree distribution of the true underlying network is analytically reconstructed, assuming the probabilities of type I and type II errors. Chapters 4-5 show that the method is robust to incorrect estimates of α and β within reasonable limits. In Chapter 6, an iterative procedure to enhance this method is presented in the case of large errors on the estimates of α and β. The investigations presented so far focus on the influence of false positive and false negative links on the network characteristics. In Chapter 7, the analysis is reversed - the study focuses on the influence of network characteristics on the probability of type I and type II errors, in the case of networks of coupled oscillators. The probabilities of α and β are influenced by the shortest path length and the detour degree, respectively. These results have been used to improve the network reconstruction, when the true underlying network is not known a priori, introducing a novel and advanced concept of threshold.}, language = {en} }