@article{ReichetzederChenFoelleretal.2014, author = {Reichetzeder, Christoph and Chen, Hong and Foeller, Michael and Slowinski, Torsten and Li, Jian and Chen, You-Peng and Lang, Florian and Hocher, Berthold}, title = {Maternal vitamin D deficiency and fetal programming - lessons learned from humans and mice}, series = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie}, volume = {39}, journal = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie}, number = {4}, publisher = {Karger}, address = {Basel}, issn = {1420-4096}, doi = {10.1159/000355809}, pages = {315 -- 329}, year = {2014}, abstract = {Background/Aims: Cardiovascular disease partially originates from poor environmental and nutritional conditions in early life. Lack of micronutrients like 25 hydroxy vitamin D-3 (25OHD) during pregnancy may be an important treatable causal factor. The present study explored the effect of maternal 25OHD deficiency on the offspring. Methods: We performed a prospective observational study analyzing the association of maternal 25OHD deficiency during pregnancy with birth outcomes considering confounding. To show that vitamin D deficiency may be causally involved in the observed associations, mice were set on either 25OHD sufficient or insufficient diets before and during pregnancy. Growth, glucose tolerance and mortality was analyzed in the F1 generation. Results: The clinical study showed that severe 25OHD deficiency was associated with low birth weight and low gestational age. ANCOVA models indicated that established confounding factors such as offspring sex, smoking during pregnancy and maternal BMI did not influence the impact of 25OHD on birth weight. However, there was a significant interaction between 25OHD and gestational age. Maternal 25OHD deficiency was also independently associated with low APGAR scores 5 minutes postpartum. The offspring of 25OHD deficient mice grew slower after birth, had an impaired glucose tolerance shortly after birth and an increased mortality during follow-up. Conclusions: Our study demonstrates an association between maternal 25OHD and offspring birth weight. The effect of 25OHD on birth weight seems to be mediated by vitamin D controlling gestational age. Results from an animal experiment suggest that gestational 25OHD insufficiency is causally linked to adverse pregnancy outcomes. Since birth weight and prematurity are associated with an adverse cardiovascular outcome in later life, this study emphasizes the need for novel monitoring and treatment guidelines of vitamin D deficiency during pregnancy.}, language = {en} } @article{LiLuTsuprykovetal.2018, author = {Li, Jian and Lu, Yong-Ping and Tsuprykov, Oleg and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Reichetzeder, Christoph and Tian, Mei and Zhang, Xiao Li and Zhang, Qin and Sun, Guo-Ying and Guo, Jingli and Gaballa, Mohamed Mahmoud Salem Ahmed and Peng, Xiao-Ning and Lin, Ge and Hocher, Berthold}, title = {Folate treatment of pregnant rat dams abolishes metabolic effects in female offspring induced by a paternal pre-conception unhealthy diet}, series = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, volume = {61}, journal = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, number = {8}, publisher = {Springer}, address = {New York}, issn = {0012-186X}, doi = {10.1007/s00125-018-4635-x}, pages = {1862 -- 1876}, year = {2018}, abstract = {Aims/hypothesis Paternal high-fat diet prior to mating programmes impaired glucose tolerance in female offspring. We examined whether the metabolic consequences in offspring could be abolished by folate treatment of either the male rats before mating or the corresponding female rats during pregnancy. Methods Male F0 rats were fed either control diet or high-fat, high-sucrose and high-salt diet (HFSSD), with or without folate, before mating. Male rats were mated with control-diet-fed dams. After mating, the F0 dams were fed control diet with or without folate during pregnancy.}, language = {en} }