@article{GuillemoteauTronicke2015, author = {Guillemoteau, Julien and Tronicke, Jens}, title = {Non-standard electromagnetic induction sensor configurations: Evaluating sensitivities and applicability}, series = {Journal of applied geophysics}, volume = {118}, journal = {Journal of applied geophysics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0926-9851}, doi = {10.1016/j.jappgeo.2015.04.008}, pages = {15 -- 23}, year = {2015}, abstract = {For near surface geophysical surveys, small-fixed offset loop-loop electromagnetic induction (EMI) sensors are usually placed parallel to the ground surface (i.e., both loops are at the same height above ground). In this study, we evaluate the potential of making measurements with a system that is not parallel to the ground; i.e., by positioning the system at different inclinations with respect to ground surface. First, we present the Maxwell theory for inclined magnetic dipoles over a homogeneous half space. By analyzing the sensitivities of such configurations, we,show that varying the angle of the system would result in improved imaging capabilities. For example, we show that acquiring data with a vertical system allows detection of a conductive body with a better lateral resolution compared to data acquired using standard horizontal configurations. The synthetic responses are presented for a heterogeneous medium and compared to field data acquired in the historical Park Sanssouci in Potsdam, Germany. After presenting a detailed sensitivity analysis and synthetic examples of such ground conductivity measurements, we suggest a new strategy of acquisition that allows to better estimate the true distribution of electrical conductivity using instruments with a fixed, small offset between the loops. This strategy is evaluated using field data collected at a well-constrained test-site in Horstwalde (Germany). Here, the target buried utility pipes are best imaged using vertical system configurations demonstrating the potential of our approach for typical applications. (C) 2015 Elsevier B.V. Pill rights reserved.}, language = {en} } @article{LeyCooperViezzoliGuillemoteauetal.2015, author = {Ley-Cooper, Alan Yusen and Viezzoli, Andrea and Guillemoteau, Julien and Vignoli, Giulio and Macnae, James and Cox, Leif and Munday, Tim}, title = {Airborne electromagnetic modelling options and their consequences in target definition}, series = {Exploration geophysics : the bulletin of the Australian Society of Exploration Geophysicists}, volume = {46}, journal = {Exploration geophysics : the bulletin of the Australian Society of Exploration Geophysicists}, number = {1}, publisher = {CSIRO}, address = {Clayton}, issn = {0812-3985}, doi = {10.1071/EG14045}, pages = {74 -- 84}, year = {2015}, abstract = {Given the range of geological conditions under which airborne EM surveys are conducted, there is an expectation that the 2D and 3D methods used to extract models that are geologically meaningful would be favoured over ID inversion and transforms. We do after all deal with an Earth that constantly undergoes, faulting, intrusions, and erosive processes that yield a subsurface morphology, which is, for most parts, dissimilar to a horizontal layered earth. We analyse data from a survey collected in the Musgrave province, South Australia. It is of particular interest since it has been used for mineral prospecting and for a regional hydro-geological assessment. The survey comprises abrupt lateral variations, more-subtle lateral continuous sedimentary sequences and filled palaeovalleys. As consequence, we deal with several geophysical targets of contrasting conductivities, varying geometries and at different depths. We invert the observations by using several algorithms characterised by the different dimensionality of the forward operator. Inversion of airborne EM data is known to be an ill-posed problem. We can generate a variety of models that numerically adequately fit the measured data, which makes the solution non-unique. The application of different deterministic inversion codes or transforms to the same dataset can give dissimilar results, as shown in this paper. This ambiguity suggests the choice of processes and algorithms used to interpret AEM data cannot be resolved as a matter of personal choice and preference. The degree to which models generated by a ID algorithm replicate/or not measured data, can be an indicator of the data's dimensionality, which perse does not imply that data that can be fitted with a 1D model cannot be multidimensional. On the other hand, it is crucial that codes that can generate 2D and 3D models do reproduce the measured data in order for them to be considered as a plausible solution. In the absence of ancillary information, it could be argued that the simplest model with the simplest physics might be preferred.}, language = {en} } @article{GuillemoteauSailhacBehaegel2015, author = {Guillemoteau, Julien and Sailhac, Pascal and Behaegel, Mickael}, title = {Modelling an arbitrarily oriented magnetic dipole over a homogeneous half-space for a rapid topographic correction of airborne EM data}, series = {Exploration geophysics : the bulletin of the Australian Society of Exploration Geophysicists}, volume = {46}, journal = {Exploration geophysics : the bulletin of the Australian Society of Exploration Geophysicists}, number = {1}, publisher = {CSIRO}, address = {Clayton}, issn = {0812-3985}, doi = {10.1071/EG13093}, pages = {85 -- 96}, year = {2015}, abstract = {Most airborne electromagnetic (EM) processing programs assume a flat ground surface. However, in mountainous areas, the system can be at an angle with regard to the ground. As the system is no longer parallel to the ground surface, the measured magnetic field has to be corrected and the ground induced eddy current has to be modelled in a better way when performing a very fine interpretation of the data. We first recall the theoretical background for the modelling of a magnetic dipole source and study it in regard to the case of an arbitrarily oriented magnetic dipole. We show in particular how transient central loop helicopter borne data are influenced by this inclination. The result shows that the effect of topography on airborne EM is more important at early time windows and for systems using a short cut-off source. In this paper, we suggest that an estimate be made off the locally averaged inclination of the system to the ground and then to correct the data for this before inverting it (whether the inversion assumes a flat 1D, 2D or 3D sub-surface). Both 1D and 2D inversions are applied to synthetic and real data sets with such a correction. The consequence on the ground imaging is small for slopes with an angle less than 25 degrees but the correction factor can be useful for improving the estimation of depths in mountainous areas.}, language = {en} } @article{GuillemoteauSailhacBoulangeretal.2015, author = {Guillemoteau, Julien and Sailhac, Pascal and Boulanger, Charles and Trules, Jeremie}, title = {Inversion of ground constant offset loop-loop electromagnetic data for a large range of induction numbers}, series = {Geophysics}, volume = {80}, journal = {Geophysics}, number = {1}, publisher = {Society of Exploration Geophysicists}, address = {Tulsa}, issn = {0016-8033}, doi = {10.1190/GEO2014-0005.1}, pages = {E11 -- E21}, year = {2015}, abstract = {Ground loop-loop electromagnetic surveys are often conducted to fulfill the low-induction-number condition. To image the distribution of electric conductivity inside the ground, it is then necessary to collect a multioffset data set. We considered that less time-consuming constant offset measurements can also reach this objective. This can be achieved by performing multifrequency soundings, which are commonly performed for the airborne electromagnetic method. Ground multifrequency soundings have to be interpreted carefully because they contain high-induction-number data. These data are interpreted in two steps. First, the in-phase and out-of-phase data are converted into robust apparent conductivities valid for all the induction numbers. Second, the apparent conductivity data are inverted in 1D and 2D to obtain the true distribution of the ground conductivity. For the inversion, we used a general half-space Jacobian for the apparent conductivity valid for all the induction numbers. This method was applied and validated on synthetic data computed with the full Maxwell theory. The method was then applied on field data acquired in the test site of Provins, in the Parisian basin, France. The result revealed good agreement with borehole and geologic information, demonstrating the applicability of our method.}, language = {en} } @article{GuillemoteauSimonLuecketal.2016, author = {Guillemoteau, Julien and Simon, Francois-Xavier and L{\"u}ck, Erika and Tronicke, Jens}, title = {1D sequential inversion of portable multi-configuration electromagnetic induction data}, series = {Near surface geophysics}, volume = {14}, journal = {Near surface geophysics}, publisher = {Wiley-VCH}, address = {Houten}, issn = {1569-4445}, doi = {10.3997/1873-0604.2016029}, pages = {423 -- 432}, year = {2016}, abstract = {We present an algorithm that performs sequentially one-dimensional inversion of subsurface magnetic permeability and electrical conductivity by using multi-configuration electromagnetic induction sensor data. The presented method is based on the conversion of the in-phase and out-of-phase data into effective magnetic permeability and electrical conductivity of the equivalent homogeneous half-space. In the case of small-offset systems, such as portable electromagnetic induction sensors, for which in-phase and out-of-phase data are moderately coupled, the effective half-space magnetic permeability and electrical conductivity can be inverted sequentially within an iterative scheme. We test and evaluate the proposed inversion strategy using synthetic and field examples. First, we apply it to synthetic data for some highly magnetic environments. Then, the method is tested on real field data acquired in a basaltic environment to image a formation of archaeological interest. These examples demonstrate that a joint interpretation of in-phase and out-of-phase data leads to a better characterisation of the subsurface in magnetic environments such as volcanic areas.}, language = {en} } @article{GuillemoteauLueckTronicke2017, author = {Guillemoteau, Julien and L{\"u}ck, Erika and Tronicke, Jens}, title = {1D inversion of direct current data acquired with a rolling electrode system}, series = {Journal of applied geophysics}, volume = {146}, journal = {Journal of applied geophysics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0926-9851}, doi = {10.1016/j.jappgeo.2017.09.010}, pages = {167 -- 177}, year = {2017}, abstract = {Direct current systems employing a kinematic surveying strategy allow to analyze the electrical resistivity of the subsurface for large areas (i.e., several hectares). Typical applications are found in precision agriculture, archaeological prospecting and soil sciences. With the typical survey setting, the collected data sets are often characterized by a rather high level of noise and a rather coarse lateral sampling compared to data acquired with fixed electrodes. We therefore present an efficient one-dimensional inversion approach in which we put special attention on modeling the effects of noise. We apply this method to data recorded with a five-offset equatorial dipole-dipole system employing rolling electrodes. By performing several synthetic tests with realistic noise levels, we found that the considered five-configuration soundings allow for a reliable imaging of two-layer cases in the uppermost two meters of the subsurface, where the subsurface can be assumed to follow a horizontally layered geometry within 3 m around the system. By analyzing the corresponding sensitivity functions, we also show that the equatorial dipole-dipole array is relatively well suited for a 1D inversion approach compared to standard in-line electrode arrays. To illustrate this aspect, we show that our method can provide results similar to those obtained with a 2D Wenner imaging procedure for data recorded across a well-constrained 2D target. We finally apply our method to a large five-offset data set acquired in an agricultural study. The final pseudo-3D model of electrical resistivity is in accordance with borehole data available for the surveyed area. Our results demonstrate the applicability and the versatility of the presented inversion approach for large-scale data sets as they are typically collected with such rolling electrode systems. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{GuillemoteauChristensenJacobsenetal.2017, author = {Guillemoteau, Julien and Christensen, Niels Boie and Jacobsen, Bo Holm and Tronicke, Jens}, title = {Fast 3D multichannel deconvolution of electromagnetic induction loop-loop apparent conductivity data sets acquired at low induction numbers}, series = {Geophysics}, volume = {82}, journal = {Geophysics}, publisher = {Society of Exploration Geophysicists}, address = {Tulsa}, issn = {0016-8033}, doi = {10.1190/GEO2016-0518.1}, pages = {E357 -- E369}, year = {2017}, abstract = {Electromagnetic induction (EMI) sensors using sufficiently low-frequency harmonic sources and sufficiently small loop separations operate in the low-induction-number (LIN) domain for a relatively wide range of background conductivity. These systems are used in diverse near-surface investigations including applications from soil sciences, hydrology, and archaeology. The special case of portable multiconfiguration EMI sensors operating at frequencies <= 20 kHz offers the possibility of using a fast linear deconvolution method to interpret multichannel data sets in three dimensions. Here, we have developed a fast 3D inversion/deconvolution method regularized with 3D smoothness constraints and formulated in the hybrid spectral-spatial domain. Compared with other linear approaches, the spectral-spatial domain formulation significantly reduces the computational cost of the processing and opens the door for real-time 3D interpretation of large data sets consisting of more than 100,000 data points. First, we test our proposed algorithm on synthetic data sets computed with the full Maxwell theory. Then, we apply our method to a real four-configuration EMI data set acquired to map the thickness of peat layers embedded in a sandy environment. For the synthetic and the field example, we compared our result with the result obtained using a standard point-by-point 1D nonlinear inversion approach. This comparison demonstrates that the proposed methodology provides superior lateral resolution compared with the 1D nonlinear inversion, at the same time significantly reducing the computational cost of the processing.}, language = {en} } @article{GarcinSchildgenAcostaetal.2017, author = {Garcin, Yannick and Schildgen, Taylor F. and Acosta, Veronica Torres and Melnick, Daniel and Guillemoteau, Julien and Willenbring, Jane and Strecker, Manfred}, title = {Short-lived increase in erosion during the African Humid Period}, series = {Earth \& planetary science letters}, volume = {459}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.11.017}, pages = {58 -- 69}, year = {2017}, abstract = {The African Humid Period (AHP) between similar to 15 and 5.5 cal. kyr BP caused major environmental change in East Africa, including filling of the Suguta Valley in the northern Kenya Rift with an extensive (similar to 2150 km(2)), deep (similar to 300 m) lake. Interfingering fluvio-lacustrine deposits of the Baragoi paleo-delta provide insights into the lake-level history and how erosion rates changed during this time, as revealed by delta-volume estimates and the concentration of cosmogenic Be-10 in fluvial sand. Erosion rates derived from delta-volume estimates range from 0.019 to 0.03 mm yr(-1). Be-10-derived paleo-erosion rates at similar to 11.8 cal. kyr BP ranged from 0.035 to 0.086 mm yr(-1), and were 2.7 to 6.6 times faster than at present. In contrast, at similar to 8.7 cal. kyr BP, erosion rates were only 1.8 times faster than at present. Because Be-10-derived erosion rates integrate over several millennia; we modeled the erosion-rate history that best explains the 10Be data using established non-linear equations that describe in situ cosmogenic isotope production and decay. Two models with different temporal constraints (15-6.7 and 12-6.7 kyr) suggest erosion rates that were 25 to 300 times higher than the initial erosion rate (pre-delta formation). That pulse of high erosion rates was short (similar to 4 kyr or less) and must have been followed by a rapid decrease in rates while climate remained humid to reach the modern Be-10-based erosion rate of,similar to 0.013 mm yr(-1). Our simulations also flag the two highest Be-10-derived erosion rates at 11.8 kyr BP related to nonuniform catchment erosion. These changes in erosion rates and processes during the AHP may reflect a strong increase in precipitation, runoff, and erosivity at the arid-to-humid transition either at 15 or similar to 12 cal. kyr BP, before the landscape stabilized again, possibly due to increased soil production and denser vegetation.}, language = {en} } @misc{GarcinAcostaMelnicketal.2017, author = {Garcin, Yannick and Acosta, Veronica Torres and Melnick, Daniel and Guillemoteau, Julien and Willenbring, Jane and Strecker, Manfred}, title = {Short-lived increase in erosion during the African Humid Period: Evidence from the northern Kenya Rift (vol 759, pg 58, 2017)}, series = {Earth \& planetary science letters}, volume = {474}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.07.027}, pages = {528 -- 528}, year = {2017}, language = {en} } @article{KloseGuillemoteauSimonetal.2018, author = {Klose, Tim and Guillemoteau, Julien and Simon, Francois-Xavier and Tronicke, Jens}, title = {Toward subsurface magnetic permeability imaging with electromagnetic induction sensors}, series = {Geophysics}, volume = {83}, journal = {Geophysics}, number = {5}, publisher = {Society of Exploration Geophysicists}, address = {Tulsa}, issn = {0016-8033}, doi = {10.1190/GEO2017-0827.1}, pages = {E335 -- E345}, year = {2018}, abstract = {In near-surface geophysics, small portable loop-loop electro-magnetic induction (EMI) sensors using harmonic sources with a constant and rather small frequency are increasingly used to investigate the electrical properties of the subsurface. For such sensors, the influence of electrical conductivity and magnetic permeability on the EMI response is well-understood. Typically, data analysis focuses on reconstructing an electrical conductivity model by inverting the out-of-phase response. However, in a variety of near-surface applications, magnetic permeability (or susceptibility) models derived from the in-phase (IP) response may provide important additional information. In view of developing a fast 3D inversion procedure of the IP response for a dense grid of measurement points, we first analyze the 3D sensitivity functions associated with a homogeneous permeable half-space. Then, we compare synthetic data computed using a linear forward-modeling method based on these sensitivity functions with synthetic data computed using full nonlinear forward-modeling methods. The results indicate the correctness and applicability of our linear forward-modeling approach. Furthermore, we determine the advantages of converting IP data into apparent permeability, which, for example, allows us to extend the applicability of the linear forward-modeling method to high-magnetic environments. Finally, we compute synthetic data with the linear theory for a model consisting of a controlled magnetic target and compare the results with field data collected with a four-configuration loop-loop EMI sensor. With this field-scale experiment, we determine that our linear forward-modeling approach can reproduce measured data with sufficiently small error, and, thus, it represents the basis for developing efficient inversion approaches.}, language = {en} }