@article{PieperWeheBornhorstetal.2014, author = {Pieper, Imke and Wehe, Christoph A. and Bornhorst, Julia and Ebert, Franziska and Leffers, Larissa and Holtkamp, Michael and H{\"o}seler, Pia and Weber, Till and Mangerich, Aswin and B{\"u}rkle, Alexander and Karst, Uwe and Schwerdtle, Tanja}, title = {Mechanisms of Hg species induced toxicity in cultured human astrocytes}, series = {Metallomics}, volume = {2014}, journal = {Metallomics}, number = {6}, issn = {1756-591X}, doi = {10.1039/c3mt00337j}, pages = {662 -- 671}, year = {2014}, abstract = {The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co-genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl)ation contributes to organic Hg induced neurotoxicity.}, language = {en} } @article{PieperWeheBornhorstetal.2014, author = {Pieper, Imke and Wehe, Christoph A. and Bornhorst, Julia and Ebert, Franziska and Leffers, Larissa and Holtkamp, Michael and Hoeseler, Pia and Weber, Till and Mangerich, Aswin and Buerkle, Alexander and Karst, Uwe and Schwerdtle, Tanja}, title = {Mechanisms of Hg species induced toxicity in cultured human astrocytes: genotoxicity and DNA-damage response}, series = {Metallomics : integrated biometal science}, volume = {6}, journal = {Metallomics : integrated biometal science}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c3mt00337j}, pages = {662 -- 671}, year = {2014}, abstract = {The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co- genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl) ation contributes to organic Hg induced neurotoxicity.}, language = {en} } @misc{PieperWeheBornhorstetal.2014, author = {Pieper, Imke and Wehe, Christoph A. and Bornhorst, Julia and Ebert, Franziska and Leffers, Larissa and Holtkamp, Michael and H{\"o}seler, Pia and Weber, Till and Mangerich, Aswin and B{\"u}rkle, Alexander and Karst, Uwe and Schwerdtle, Tanja}, title = {Mechanisms of Hg species induced toxicity in cultured human astrocytes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74379}, pages = {662 -- 671}, year = {2014}, abstract = {The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co- genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl) ation contributes to organic Hg induced neurotoxicity.}, language = {en} } @article{CramerTackeBornhorstetal.2014, author = {Cramer, Sandra and Tacke, Sebastian and Bornhorst, Julia and Klingauf, J{\"u}rgen and Schwerdtle, Tanja and Galla, Hans-Joachim}, title = {The Influence of Silver Nanoparticles on the Blood-Brain and the Blood-Cerebrospinal Fluid Barrier in vitro}, series = {Journal of Nanomedicine \& Nanotechnology}, volume = {5}, journal = {Journal of Nanomedicine \& Nanotechnology}, number = {5}, issn = {2157-7439}, doi = {10.4172/2157-7439.1000225}, pages = {12}, year = {2014}, abstract = {The use of silver nanoparticles in medical and consumer products such as wound dressings, clothing and cosmetic has increased significantly in recent years. Still, the influence of these particles on our health and especially on our brain, has not been examined adequately up to now. We studied the influence of AgEO- (Ethylene Oxide) and AgCitrate-Nanoparticles (NPs) on the protective barriers of the brain, namely the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (blood-CSF) barrier in vitro. The NPs toxicity was evaluated by examining changes in membrane integrity, cell morphology, barrier properties, oxidative stress and inflammatory reactions. AgNPs decreased cell viability, disturbed barrier integrity and tight junctions and triggered oxidative stress and DNA strand breaks. However, all mentioned effects were, at least partly, suppressed by a Citrate-coating and were most pronounced in the cells of the BBB as compared to the epithelial cells representing the blood-CSF barrier. AgEO- but not AgCitrate-NPs also triggered an inflammatory reaction in porcine brain capillary endothelial cells (PBCEC), which represent the BBB. Our data indicate that AgNPs may cause adverse effects within the barriers of the brain, but their toxicity can be reduced by choosing an appropriate coating material.}, language = {en} } @article{LohrenBornhorstGallaetal.2015, author = {Lohren, Hanna and Bornhorst, Julia and Galla, Hans-Joachim and Schwerdtle, Tanja}, title = {The blood-cerebrospinal fluid barrier}, series = {Metallomics : integrated biometal science}, volume = {10}, journal = {Metallomics : integrated biometal science}, number = {7}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/C5MT00171D}, pages = {1420 -- 1430}, year = {2015}, abstract = {Exposure to organic mercury compounds promotes primarily neurological effects. Although methylmercury is recognized as a potent neurotoxicant, its transfer into the central nervous system (CNS) is not fully evaluated. While methylmercury and thiomersal pass the blood-brain barrier, limited data are available regarding the second brain regulating interface, the blood-cerebrospinal fluid (CSF) barrier. This novel study was designed to investigate the effects of organic as well as inorganic mercury compounds on, and their transfer across, a porcine in vitro model of the blood-CSF barrier for the first time. The barrier system is significantly more sensitive towards organic Hg compounds as compared to inorganic compounds regarding the endpoints cytotoxicity and barrier integrity. Whereas there are low transfer rates from the blood side to the CSF side, our results strongly indicate an active transfer of the organic mercury compounds out of the CSF. These results are the first to demonstrate an efflux of organic mercury compounds regarding the CNS and provide a completely new approach in the understanding of mercury compounds specific transport.}, language = {en} } @article{CroneAschnerSchwerdtleetal.2015, author = {Crone, Barbara and Aschner, Michael A. and Schwerdtle, Tanja and Karst, Uwe and Bornhorst, Julia}, title = {Elemental bioimaging of Cisplatin in Caenorhabditis elegans by LA-ICP-MS}, series = {Metallomics}, volume = {2015}, journal = {Metallomics}, number = {7}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-591X}, doi = {10.1039/c5mt00096c}, pages = {1189 -- 1195}, year = {2015}, abstract = {cis-Diamminedichloroplatinum(II) (Cisplatin) is one of the most important and frequently used cytostatic drugs for the treatment of various solid tumors. Herein, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method incorporating a fast and simple sample preparation protocol was developed for the elemental mapping of Cisplatin in the model organism Caenorhabditis elegans (C. elegans). The method allows imaging of the spatially-resolved elemental distribution of platinum in the whole organism with respect to the anatomic structure in L4 stage worms at a lateral resolution of 5 μm. In addition, a dose- and time-dependent Cisplatin uptake was corroborated quantitatively by a total reflection X-ray fluorescence spectroscopy (TXRF) method, and the elemental mapping indicated that Cisplatin is located in the intestine and in the head of the worms. Better understanding of the distribution of Cisplatin in this well-established model organism will be instrumental in deciphering Cisplatin toxicity and pharmacokinetics. Since the cytostatic effect of Cisplatin is based on binding the DNA by forming intra- and interstrand crosslinks, the response of poly(ADP-ribose)metabolism enzyme 1 (pme-1) deletion mutants to Cisplatin was also examined. Loss of pme-1, which is the C. elegans ortholog of human poly(ADP-ribose) polymerase 1 (PARP-1) led to disturbed DNA damage response. With respect to survival and brood size, pme-1 deletion mutants were more sensitive to Cisplatin as compared to wildtype worms, while Cisplatin uptake was indistinguishable.}, language = {en} } @article{KumarGoodwinUhouseetal.2015, author = {Kumar, Kevin K. and Goodwin, Cody R. and Uhouse, Michael A. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael A. and McLean, John A. and Bowman, Aaron B.}, title = {Untargeted metabolic profiling identifies interactions between Huntington's disease and neuronal manganese status}, series = {Metallomics}, volume = {7}, journal = {Metallomics}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1756-591X}, doi = {10.1039/C4MT00223G}, pages = {363 -- 370}, year = {2015}, abstract = {Manganese (Mn) is an essential micronutrient for development and function of the nervous system. Deficiencies in Mn transport have been implicated in the pathogenesis of Huntington's disease (HD), an autosomal dominant neurodegenerative disorder characterized by loss of medium spiny neurons of the striatum. Brain Mn levels are highest in striatum and other basal ganglia structures, the most sensitive brain regions to Mn neurotoxicity. Mouse models of HD exhibit decreased striatal Mn accumulation and HD striatal neuron models are resistant to Mn cytotoxicity. We hypothesized that the observed modulation of Mn cellular transport is associated with compensatory metabolic responses to HD pathology. Here we use an untargeted metabolomics approach by performing ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) on control and HD immortalized mouse striatal neurons to identify metabolic disruptions under three Mn exposure conditions, low (vehicle), moderate (non-cytotoxic) and high (cytotoxic). Our analysis revealed lower metabolite levels of pantothenic acid, and glutathione (GSH) in HD striatal cells relative to control cells. HD striatal cells also exhibited lower abundance and impaired induction of isobutyryl carnitine in response to increasing Mn exposure. In addition, we observed induction of metabolites in the pentose shunt pathway in HD striatal cells after high Mn exposure. These findings provide metabolic evidence of an interaction between the HD genotype and biologically relevant levels of Mn in a striatal cell model with known HD by Mn exposure interactions. The metabolic phenotypes detected support existing hypotheses that changes in energetic processes underlie the pathobiology of both HD and Mn neurotoxicity.}, language = {en} } @misc{ChakrabortyChenBornhorstetal.2015, author = {Chakraborty, Sudipta and Chen, Pan and Bornhorst, Julia and Schwerdtle, Tanja and Schumacher, Fabian and Kleuser, Burkhard and Bowman, Aaron B. and Aschner, Michael A.}, title = {Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C. elegans}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99508}, pages = {10}, year = {2015}, abstract = {Overexposure to the essential metal manganese (Mn) can result in an irreversible condition known as manganism that shares similar pathophysiology with Parkinson's disease (PD), including dopaminergic (DAergic) cell loss that leads to motor and cognitive impairments. However, the mechanisms behind this neurotoxicity and its relationship with PD remain unclear. Many genes confer risk for autosomal recessive, early-onset PD, including the parkin/PARK2 gene that encodes for the E3 ubiquitin ligase Parkin. Using Caenorhabditis elegans (C. elegans) as an invertebrate model that conserves the DAergic system, we previously reported significantly increased Mn accumulation in pdr-1/parkin mutants compared to wildtype (WT) animals. For the current study, we hypothesize that this enhanced accumulation is due to alterations in Mn transport in the pdr-1 mutants. While no change in mRNA expression of the major Mn importer proteins (smf-1-3) was found in pdr-1 mutants, significant downregulation in mRNA levels of the putative Mn exporter ferroportin (fpn-1.1) was observed. Using a strain overexpressing fpn-1.1 in worms lacking pdr-1, we show evidence for attenuation of several endpoints of Mn-induced toxicity, including survival, metal accumulation, mitochondrial copy number and DAergic integrity, compared to pdr-1 mutants alone. These changes suggest a novel role of pdr-1 in modulating Mn export through altered transporter expression, and provides further support of metal dyshomeostasis as a component of Parkinsonism pathophysiology.}, language = {en} } @misc{KumarGoodwinUhouseetal.2015, author = {Kumar, Kevin K. and Goodwin, Cody R. and Uhouse, Michael A. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael A. and McLean, John A. and Bowman, Aaron B.}, title = {Untargeted metabolic profiling identifies interactions between Huntington's disease and neuronal manganese status}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94314}, pages = {363 -- 370}, year = {2015}, abstract = {Manganese (Mn) is an essential micronutrient for development and function of the nervous system. Deficiencies in Mn transport have been implicated in the pathogenesis of Huntington's disease (HD), an autosomal dominant neurodegenerative disorder characterized by loss of medium spiny neurons of the striatum. Brain Mn levels are highest in striatum and other basal ganglia structures, the most sensitive brain regions to Mn neurotoxicity. Mouse models of HD exhibit decreased striatal Mn accumulation and HD striatal neuron models are resistant to Mn cytotoxicity. We hypothesized that the observed modulation of Mn cellular transport is associated with compensatory metabolic responses to HD pathology. Here we use an untargeted metabolomics approach by performing ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) on control and HD immortalized mouse striatal neurons to identify metabolic disruptions under three Mn exposure conditions, low (vehicle), moderate (non-cytotoxic) and high (cytotoxic). Our analysis revealed lower metabolite levels of pantothenic acid, and glutathione (GSH) in HD striatal cells relative to control cells. HD striatal cells also exhibited lower abundance and impaired induction of isobutyryl carnitine in response to increasing Mn exposure. In addition, we observed induction of metabolites in the pentose shunt pathway in HD striatal cells after high Mn exposure. These findings provide metabolic evidence of an interaction between the HD genotype and biologically relevant levels of Mn in a striatal cell model with known HD by Mn exposure interactions. The metabolic phenotypes detected support existing hypotheses that changes in energetic processes underlie the pathobiology of both HD and Mn neurotoxicity.}, language = {en} } @misc{CroneAschnerSchwerdtleetal.2015, author = {Crone, Barbara and Aschner, Michael A. and Schwerdtle, Tanja and Karst, Uwe and Bornhorst, Julia}, title = {Elemental bioimaging of Cisplatin in Caenorhabditis elegans by LA-ICP-MS}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-80031}, pages = {1189 -- 1195}, year = {2015}, abstract = {cis-Diamminedichloroplatinum(II) (Cisplatin) is one of the most important and frequently used cytostatic drugs for the treatment of various solid tumors. Herein, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method incorporating a fast and simple sample preparation protocol was developed for the elemental mapping of Cisplatin in the model organism Caenorhabditis elegans (C. elegans). The method allows imaging of the spatially-resolved elemental distribution of platinum in the whole organism with respect to the anatomic structure in L4 stage worms at a lateral resolution of 5 μm. In addition, a dose- and time-dependent Cisplatin uptake was corroborated quantitatively by a total reflection X-ray fluorescence spectroscopy (TXRF) method, and the elemental mapping indicated that Cisplatin is located in the intestine and in the head of the worms. Better understanding of the distribution of Cisplatin in this well-established model organism will be instrumental in deciphering Cisplatin toxicity and pharmacokinetics. Since the cytostatic effect of Cisplatin is based on binding the DNA by forming intra- and interstrand crosslinks, the response of poly(ADP-ribose)metabolism enzyme 1 (pme-1) deletion mutants to Cisplatin was also examined. Loss of pme-1, which is the C. elegans ortholog of human poly(ADP-ribose) polymerase 1 (PARP-1) led to disturbed DNA damage response. With respect to survival and brood size, pme-1 deletion mutants were more sensitive to Cisplatin as compared to wildtype worms, while Cisplatin uptake was indistinguishable.}, language = {en} }