@article{ZamponiPenfoldNachtegaaletal.2014, author = {Zamponi, Flavio and Penfold, Thomas J. and Nachtegaal, Maarten and L{\"u}bcke, Andrea and Rittmann, Jochen and Milne, Chris J. and Chergui, Majed and van Bokhoven, Jeroen A.}, title = {Probing the dynamics of plasmon-excited hexanethiol-capped gold nanoparticles by picosecond X-ray absorption spectroscopy}, series = {physical chemistry, chemical physics : PCCP}, volume = {2014}, journal = {physical chemistry, chemical physics : PCCP}, number = {16}, issn = {1463-9076}, doi = {10.1039/c4cp03301a}, pages = {23157 -- 23163}, year = {2014}, abstract = {Picosecond X-ray absorption spectroscopy (XAS) is used to investigate the electronic and structural dynamics initiated by plasmon excitation of 1.8 nm diameter Au nanoparticles (NPs) functionalised with 1-hexanethiol. We show that 100 ps after photoexcitation the transient XAS spectrum is consistent with an 8\% expansion of the Au-Au bond length and a large increase in disorder associated with melting of the NPs. Recovery of the ground state occurs with a time constant of ∼1.8 ns, arising from thermalisation with the environment. Simulations reveal that the transient spectrum exhibits no signature of charge separation at 100 ps and allows us to estimate an upper limit for the quantum yield (QY) of this process to be <0.1.}, language = {en} } @misc{ZamponiPenfoldNachtegaaletal.2014, author = {Zamponi, Flavio and Penfold, Thomas J. and Nachtegaal, Maarten and L{\"u}bcke, Andrea and Rittmann, Jochen and Milne, Chris J. and Chergui, Majed and van Bokhoven, Jeroen A.}, title = {Probing the dynamics of plasmon-excited hexanethiol-capped gold nanoparticles by picosecond X-ray absorption spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74492}, pages = {23157 -- 23163}, year = {2014}, abstract = {Picosecond X-ray absorption spectroscopy (XAS) is used to investigate the electronic and structural dynamics initiated by plasmon excitation of 1.8 nm diameter Au nanoparticles (NPs) functionalised with 1-hexanethiol. We show that 100 ps after photoexcitation the transient XAS spectrum is consistent with an 8\% expansion of the Au-Au bond length and a large increase in disorder associated with melting of the NPs. Recovery of the ground state occurs with a time constant of ∼1.8 ns, arising from thermalisation with the environment. Simulations reveal that the transient spectrum exhibits no signature of charge separation at 100 ps and allows us to estimate an upper limit for the quantum yield (QY) of this process to be <0.1.}, language = {en} } @phdthesis{Hunke2015, author = {Hunke, Philip Paul}, title = {The Brazilian Cerrado: ecohydrological assessment of water and soil degradation in heavily modified meso-scale catchments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85110}, school = {Universit{\"a}t Potsdam}, pages = {xi, 124}, year = {2015}, abstract = {The Brazilian Cerrado is recognised as one of the most threatened biomes in the world, as the region has experienced a striking change from natural vegetation to intense cash crop production. The impacts of rapid agricultural expansion on soil and water resources are still poorly understood in the region. Therefore, the overall aim of the thesis is to improve our understanding of the ecohydrological processes causing water and soil degradation in the Brazilian Cerrado. I first present a metaanalysis to provide quantitative evidence and identifying the main impacts of soil and water alterations resulting from land use change. Second, field studies were conducted to (i) examine the effects of land use change on soils of natural cerrado transformed to common croplands and pasture and (ii) indicate how agricultural production affects water quality across a meso-scale catchment. Third, the ecohydrological process-based model SWAT was tested with simple scenario analyses to gain insight into the impacts of land use and climate change on the water cycling in the upper S{\~a}o Louren{\c{c}}o catchment which experienced decreasing discharges in the last 40 years. Soil and water quality parameters from different land uses were extracted from 89 soil and 18 water studies in different regions across the Cerrado. Significant effects on pH, bulk density and available P and K for croplands and less-pronounced effects on pastures were evident. Soil total N did not differ between land uses because most of the cropland sites were N-fixing soybean cultivations, which are not artificially fertilized with N. By contrast, water quality studies showed N enrichment in agricultural catchments, indicating fertilizer impacts and potential susceptibility to eutrophication. Regardless of the land use, P is widely absent because of the high-fixing capacities of deeply weathered soils and the filtering capacity of riparian vegetation. Pesticides, however, were consistently detected throughout the entire aquatic system. In several case studies, extremely high-peak concentrations exceeded Brazilian and EU water quality limits, which pose serious health risks. My field study revealed that land conversion caused a significant reduction in infiltration rates near the soil surface of pasture (-96 \%) and croplands (-90 \% to -93 \%). Soil aggregate stability was significantly reduced in croplands than in cerrado and pasture. Soybean crops had extremely high extractable P (80 mg kg-1), whereas pasture N levels declined. A snapshot water sampling showed strong seasonality in water quality parameters. Higher temperature, oxi-reduction potential (ORP), NO2-, and very low oxygen concentrations (<5 mg•l-1) and saturation (<60 \%) were recorded during the rainy season. By contrast, remarkably high PO43- concentrations (up to 0.8 mg•l-1) were measured during the dry season. Water quality parameters were affected by agricultural activities at all sampled sub-catchments across the catchment, regardless of stream characteristic. Direct NO3- leaching appeared to play a minor role; however, water quality is affected by topsoil fertiliser inputs with impact on small low order streams and larger rivers. Land conversion leaving cropland soils more susceptible to surface erosion by increased overland flow events. In a third study, the field data were used to parameterise SWAT. The model was tested with different input data and calibrated in SWAT-CUP using the SUFI-2 algorithm. The model was judged reliable to simulate the water balance in the Cerrado. A complete cerrado, pasture and cropland cover was used to analyse the impact of land use on water cycling as well as climate change projections (2039-2058) according to the projections of the RCP 8.5 scenario. The actual evapotranspiration (ET) for the cropland scenario was higher compared to the cerrado cover (+100 mm a-1). Land use change scenarios confirmed that deforestation caused higher annual ET rates explaining partly the trend of decreased streamflow. Taking all climate change scenarios into account, the most likely effect is a prolongation of the dry season (by about one month), with higher peak flows in the rainy season. Consequently, potential threats for crop production with lower soil moisture and increased erosion and sediment transport during the rainy season are likely and should be considered in adaption plans. From the three studies of the thesis I conclude that land use intensification is likely to seriously limit the Cerrado's future regarding both agricultural productivity and ecosystem stability. Because only limited data are available for the vast biome, we recommend further field studies to understand the interaction between terrestrial and aquatic systems. This thesis may serve as a valuable database for integrated modelling to investigate the impact of land use and climate change on soil and water resources and to test and develop mitigation measures for the Cerrado in the future.}, language = {en} } @phdthesis{Rohrmann2015, author = {Rohrmann, Alexander}, title = {The role of wind and water in shaping earth's plateaus}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77938}, school = {Universit{\"a}t Potsdam}, pages = {XXV, 157}, year = {2015}, abstract = {The overarching goal of this dissertation is to provide a better understanding of the role of wind and water in shaping Earth's Cenozoic orogenic plateaus - prominent high-elevation, low relief sectors in the interior of Cenozoic mountain belts. In particular, the feedbacks between surface uplift, the build-up of topography and ensuing changes in precipitation, erosion, and vegetation patterns are addressed in light of past and future climate change. Regionally, the study focuses on the two world's largest plateaus, the Altiplano-Puna Plateau of the Andes and Tibetan Plateau, both characterized by average elevations of >4 km. Both plateaus feature high, deeply incised flanks with pronounced gradients in rainfall, vegetation, hydrology, and surface processes. These characteristics are rooted in the role of plateaus to act as efficient orographic barriers to rainfall and to force changes in atmospheric flow. The thesis examines the complex topics of tectonic and climatic forcing of the surface-process regime on three different spatial and temporal scales: (1) bedrock wind-erosion rates are quantified in the arid Qaidam Basin of NW Tibet over millennial timescales using cosmogenic radionuclide dating; (2) present-day stable isotope composition in rainfall is examined across the south-central Andes in three transects between 22° S and 28° S; these data are modeled and assessed with remotely sensed rainfall data of the Tropical Rainfall Measuring Mission and the Moderate Resolution Imaging Spectroradiometer; (3) finally, a 2.5-km-long Mio-Pliocene sedimentary record of the intermontane Angastaco Basin (25°45' S, 66°00' W) is presented in the context of hydrogen and carbon compositions of molecular lipid biomarker, and oxygen and carbon isotopes obtained from pedogenic carbonates; these records are compared to other environmental proxies, including hydrated volcanic glass shards from volcanic ashes intercalated in the sedimentary strata. There are few quantitative estimates of eolian bedrock-removal rates from arid, low relief landscapes. Wind-erosion rates from the western Qaidam Basin based on cosmogenic 10Be measurements document erosion rates between 0.05 to 0.4 mm/yr. This finding indicates that in arid environments with strong winds, hyperaridity, exposure of friable strata, and ongoing rock deformation and uplift, wind erosion can outpace fluvial erosion. Large eroded sediment volumes within the Qaidam Basin and coeval dust deposition on the Chinese Loess plateau, exemplify the importance of dust production within arid plateau environments for marine and terrestrial depositional processes, but also health issues and fertilization of soils. In the south-central Andes, the analysis of 234 stream-water samples for oxygen and hydrogen reveals that areas experiencing deep convective storms do not show the commonly observed patterns of isotopic fractionation and the expected co-varying relationships between oxygen and hydrogen with increasing elevation. These convective storms are formed over semi-arid intermontane basins in the transition between the broken foreland of the Sierras Pampeanas, the Eastern Cordillera, and the Puna Plateau in the interior of the orogen. Here, convective rainfall dominates the precipitation budget and no systematic stable isotope-elevation relationship exists. Regions to the north, in the transition between the broken foreland and the Subandean foreland fold-and-thrust belt, the impact of convection is subdued, with lower degrees of storminess and a stronger expected isotope-elevation relationship. This finding of present-day fractionation trends of meteoric water is of great importance for paleoenvironmental studies in attempts to use stable isotope relationships in the reconstruction of paleoelevations. The third part of the thesis focuses on the paleohydrological characteristics of the Mio-Pliocene (10-2 Ma) Angastaco Basin sedimentary record, which reveals far-reaching environmental changes during Andean uplift and orographic barrier formation. A precipitation- evapotranspiration record identifies the onset of a precipitation regime related to the South American Low Level Jet at this latitude after 9 Ma. Humid foreland conditions existed until 7 Ma, followed by orographic barrier uplift to the east of the present-day Angastaco Basin. This was superseded by rapid (~0.5 Myr) aridification in an intermontane basin, highlighting the effects of eastward-directed deformation. A transition in vegetation cover from a humid C3 forest ecosystem to semi-arid C4-dominated vegetation was coeval with continued basin uplift to modern elevations.}, language = {en} } @phdthesis{Steeples2016, author = {Steeples, Elliot}, title = {Amino acid-derived imidazolium salts: platform molecules for N-Heterocyclic carbene metal complexes and organosilica materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101861}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2016}, abstract = {In the interest of producing functional catalysts from sustainable building-blocks, 1, 3-dicarboxylate imidazolium salts derived from amino acids were successfully modified to be suitable as N-Heterocyclic carbene (NHC) ligands within metal complexes. Complexes of Ag(I), Pd(II), and Ir(I) were successfully produced using known procedures using ligands derived from glycine, alanine, β-alanine and phenylalanine. The complexes were characterized in solid state using X-Ray crystallography, which allowed for the steric and electronic comparison of these ligands to well-known NHC ligands within analogous metal complexes. The palladium complexes were tested as catalysts for aqueous-phase Suzuki-Miyaura cross-coupling. Water-solubility could be induced via ester hydrolysis of the N-bound groups in the presence of base. The mono-NHC-Pd complexes were seen to be highly active in the coupling of aryl bromides with phenylboronic acid; the active catalyst of which was determined to be mostly Pd(0) nanoparticles. Kinetic studies determined that reaction proceeds quickly in the coupling of bromoacetophenone, for both pre-hydrolyzed and in-situ hydrolysis catalyst dissolution. The catalyst could also be recycled for an extra run by simply re-using the aqueous layer. The imidazolium salts were also used to produce organosilica hybrid materials. This was attempted via two methods: by post-grafting onto a commercial organosilica, and co-condensation of the corresponding organosilane. The co-condensation technique harbours potential for the production of solid-support catalysts.}, language = {en} } @misc{SteeplesKellingSchildeetal.2016, author = {Steeples, Elliot and Kelling, Alexandra and Schilde, Uwe and Esposito, Davide}, title = {Amino acid-derived N-heterocyclic carbene palladium complexes for aqueous phase Suzuki-Miyaura couplings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394488}, pages = {4922 -- 4930}, year = {2016}, abstract = {In this work, three ligands produced from amino acids were synthesized and used to produce five bis- and PEPPSI-type palladium-NHC complexes using a novel synthesis route from sustainable starting materials. Three of these complexes were used as precatalysts in the aqueous-phase Suzuki-Miyaura coupling of various substrates displaying high activity. TEM and mercury poisoning experiments provide evidence for Pd-nanoparticle formation stabilized in water.}, language = {en} } @article{NeillJankowskiBrandoetal.2017, author = {Neill, Christopher and Jankowski, KathiJo and Brando, Paulo M. and Coe, Michael T. and Deegan, Linda A. and Macedo, Marcia N. and Riskin, Shelby H. and Porder, Stephen and Elsenbeer, Helmut and Krusche, Alex V.}, title = {Surprisingly Modest Water Quality Impacts From Expansion and Intensification of Large-Sscale Commercial Agriculture in the Brazilian Amazon-Cerrado Region}, series = {Tropical conservation science}, volume = {10}, journal = {Tropical conservation science}, publisher = {Sage Publ.}, address = {Thousand Oaks}, issn = {1940-0829}, doi = {10.1177/1940082917720669}, pages = {5}, year = {2017}, abstract = {Large-scale commercial cropping of soybeans expanded in the tropical Amazon and Cerrado biomes of Brazil after 1990. More recently, cropping intensified from single-cropping of soybeans to double-cropping of soybeans with corn or cotton. Cropland expansion and intensification, and the accompanying use of mineral fertilizers, raise concerns about whether nutrient runoff and impacts to surface waters will be similar to those experienced in commercial cropland regions at temperate latitudes. We quantified water infiltration through soils, water yield, and streamwater chemistry in watersheds draining native tropical forest and single-and double-cropped areas on the level, deep, highly weathered soils where cropland expansion and intensification typically occurs. Although water yield increased four-fold from croplands, streamwater chemistry remained largely unchanged. Soil characteristics exerted important control over the movement of nitrogen (N) and phosphorus (P) into streams. High soil infiltration rates prevented surface erosion and movement of particulate P, while P fixation in surface soils restricted P movement to deeper soil layers. Nitrogen retention in deep soils, likely by anion exchange, also appeared to limit N leaching and export in streamwater from both single-and double-cropped watersheds that received nitrogen fertilizer. These mechanisms led to lower streamwater P and N concentrations and lower watershed N and P export than would be expected, based on studies from temperate croplands with similar cropping and fertilizer application practices.}, language = {en} } @misc{FondellEckertJayetal.2017, author = {Fondell, Mattis and Eckert, Sebastian and Jay, Raphael Martin and Weniger, Christian and Quevedo, Wilson and Niskanen, Johannes and Kennedy, Brian and Sorgenfrei, Nomi and Schick, Daniel and Giangrisostomi, Erika and Ovsyannikov, Ruslan and Adamczyk, Katrin and Huse, Nils and Wernet, Philippe and Mitzner, Rolf and F{\"o}hlisch, Alexander}, title = {Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {780}, issn = {1866-8372}, doi = {10.25932/publishup-43752}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437529}, pages = {12}, year = {2017}, abstract = {We present a setup combining a liquid flatjet sample delivery and a MHz laser system for time-resolved soft X-ray absorption measurements of liquid samples at the high brilliance undulator beamline UE52-SGM at Bessy II yielding unprecedented statistics in this spectral range. We demonstrate that the efficient detection of transient absorption changes in transmission mode enables the identification of photoexcited species in dilute samples. With iron(II)-trisbipyridine in aqueous solution as a benchmark system, we present absorption measurements at various edges in the soft X-ray regime. In combination with the wavelength tunability of the laser system, the set-up opens up opportunities to study the photochemistry of many systems at low concentrations, relevant to materials sciences, chemistry, and biology.}, language = {en} } @misc{LaraNitzeGrosseetal.2018, author = {Lara, Mark J. and Nitze, Ingmar and Große, Guido and McGuire, David}, title = {Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1035}, issn = {1866-8372}, doi = {10.25932/publishup-45987}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459875}, pages = {12}, year = {2018}, abstract = {Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (similar to 60,000 km(2)) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.}, language = {en} } @misc{DuyHeidbuechelMeyeretal.2018, author = {Duy, Nguyen Le and Heidb{\"u}chel, Ingo and Meyer, Hanno and Merz, Bruno and Apel, Heiko}, title = {What controls the stable isotope composition of precipitation in the Mekong Delta?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {927}, issn = {1866-8372}, doi = {10.25932/publishup-44574}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445743}, pages = {1239 -- 1262}, year = {2018}, abstract = {This study analyzes the influence of local and regional climatic factors on the stable isotopic composition of rainfall in the Vietnamese Mekong Delta (VMD) as part of the Asian monsoon region. It is based on 1.5 years of weekly rainfall samples. In the first step, the isotopic composition of the samples is analyzed by local meteoric water lines (LMWLs) and single-factor linear correlations. Additionally, the contribution of several regional and local factors is quantified by multiple linear regression (MLR) of all possible factor combinations and by relative importance analysis. This approach is novel for the interpretation of isotopic records and enables an objective quantification of the explained variance in isotopic records for individual factors. In this study, the local factors are extracted from local climate records, while the regional factors are derived from atmospheric backward trajectories of water particles. The regional factors, i.e., precipitation, temperature, relative humidity and the length of backward trajectories, are combined with equivalent local climatic parameters to explain the response variables delta O-18, delta H-2, and d-excess of precipitation at the station of measurement. The results indicate that (i) MLR can better explain the isotopic variation in precipitation (R-2 = 0.8) compared to single-factor linear regression (R-2 = 0.3); (ii) the isotopic variation in precipitation is controlled dominantly by regional moisture regimes (similar to 70 \%) compared to local climatic conditions (similar to 30 \%); (iii) the most important climatic parameter during the rainy season is the precipitation amount along the trajectories of air mass movement; (iv) the influence of local precipitation amount and temperature is not sig-nificant during the rainy season, unlike the regional precipitation amount effect; (v) secondary fractionation processes (e.g., sub-cloud evaporation) can be identified through the d-excess and take place mainly in the dry season, either locally for delta O-18 and delta H-2, or along the air mass trajectories for d-excess. The analysis shows that regional and local factors vary in importance over the seasons and that the source regions and transport pathways, and particularly the climatic conditions along the pathways, have a large influence on the isotopic composition of rainfall. Although the general results have been reported qualitatively in previous studies (proving the validity of the approach), the proposed method provides quantitative estimates of the controlling factors, both for the whole data set and for distinct seasons. Therefore, it is argued that the approach constitutes an advancement in the statistical analysis of isotopic records in rainfall that can supplement or precede more complex studies utilizing atmospheric models. Due to its relative simplicity, the method can be easily transferred to other regions, or extended with other factors. The results illustrate that the interpretation of the isotopic composition of precipitation as a recorder of local climatic conditions, as for example performed for paleorecords of water isotopes, may not be adequate in the southern part of the Indochinese Peninsula, and likely neither in other regions affected by monsoon processes. However, the presented approach could open a pathway towards better and seasonally differentiated reconstruction of paleoclimates based on isotopic records.}, language = {en} }