@phdthesis{Pusch2012, author = {Pusch, Martin}, title = {Horizontale und vertikale Konnektivit{\"a}t in Fließgew{\"a}ssern und Seen : {\"o}kologische Funktionen und anthropogene {\"U}berformung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63713}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Gew{\"a}sser werden traditionellerweise als abgeschlossene {\"O}kosysteme gesehen, und insbeson¬dere das Zirkulieren von Wasser und N{\"a}hrstoffen im Pelagial von Seen wird als Beispiel daf{\"u}r angef{\"u}hrt. Allerdings wurden in der j{\"u}ngeren Vergangenheit wichtige Verkn{\"u}pfungen des Freiwasserk{\"o}rpers von Gew{\"a}ssern aufgezeigt, die einerseits mit dem Benthal und andererseits mit dem Litoral, der terrestrischen Uferzone und ihrem Einzugsgebiet bestehen. Dadurch hat in den vergangen Jahren die horizontale und vertikale Konnektivit{\"a}t der Gew{\"a}sser{\"o}kosysteme erh{\"o}htes wissenschaftliches Interesse auf sich gezogen, und damit auch die {\"o}kologischen Funktionen des Gew{\"a}ssergrunds (Benthal) und der Uferzonen (Litoral). Aus der neu beschriebenen Konnektivit{\"a}t innerhalb und zwischen diesen Lebensr{\"a}umen ergeben sich weitreichende Konsequenzen f{\"u}r unser Bild von der Funktionalit{\"a}t der Gew{\"a}sser. In der vorliegenden Habilitationsschrift wird am Beispiel von Fließgew{\"a}ssern und Seen des nordostdeutschen Flachlandes eine Reihe von internen und externen funktionalen Verkn{\"u}pfungen in den horizontalen und vertikalen r{\"a}umlichen Dimensionen aufgezeigt. Die zugrunde liegenden Untersuchungen umfassten zumeist sowohl abiotische als auch biologische Variablen, und umfassten thematisch, methodisch und hinsichtlich der Untersuchungsgew{\"a}sser ein breites Spektrum. Dabei wurden in Labor- und Feldexperimenten sowie durch quantitative Feldmes¬sungen {\"o}kologischer Schl{\"u}sselprozesse wie N{\"a}hrstoffretention, Kohlenstoffumsatz, extrazellu¬l{\"a}re Enzymaktivit{\"a}t und Ressourcenweitergabe in Nahrungsnetzen (mittels Stabilisotopen¬methode) untersucht. In Bezug auf Fließgew{\"a}sser wurden dadurch wesentliche Erkenntnisse hinsichtlich der Wirkung einer durch Konnekticit{\"a}t gepr{\"a}gten Hydromorphologie auf die die aquatische Biodiversit{\"a}t und die benthisch-pelagische Kopplung erbracht, die wiederum einen Schl{\"u}sselprozess darstellt f{\"u}r die Retention von in der fließenden Welle transportierten Stoffen, und damit letztlich f{\"u}r die Produktivit{\"a}t eines Flussabschnitts. Das Litoral von Seen wurde in Mitteleuropa jahrzehntelang kaum untersucht, so dass die durchgef{\"u}hrten Untersuchungen zur Gemeinschaftsstruktur, Habitatpr{\"a}ferenzen und Nahrungs¬netzverkn{\"u}pfungen des eulitoralen Makrozoobenthos grundlegend neue Erkenntnisse erbrach¬ten, die auch unmittelbar in Ans{\"a}tze zur {\"o}kologischen Bewertung von Seeufern gem{\"a}ß EG-Wasserrahmenrichtlinie eingehen. Es konnte somit gezeigt werden, dass die Intensit{\"a}t sowohl die internen als auch der externen {\"o}kologischen Konnektivit{\"a}t durch die Hydrologie und Morphologie der Gew{\"a}sser sowie durch die Verf{\"u}gbarkeit von N{\"a}hrstoffen wesentlich beeinflusst wird, die auf diese Weise vielfach die {\"o}kologische Funktionalit{\"a}t der Gew{\"a}sser pr{\"a}gen. Dabei tr{\"a}gt die vertikale oder horizontale Konnektivit{\"a}t zur Stabilisierung der beteiligten {\"O}kosysteme bei, indem sie den Austausch erm{\"o}glicht von Pflanzenn{\"a}hrstoffen, von Biomasse sowie von migrierenden Organismen, wodurch Phasen des Ressourcenmangels {\"u}berbr{\"u}ckt werden. Diese Ergebnisse k{\"o}nnen im Rahmen der Bewirtschaftung von Gew{\"a}ssern dahingehend genutzt werden, dass die Gew{\"a}hrleistung horizontaler und vertikaler Konnektivit{\"a}t in der Regel mit r{\"a}umlich komplexeren, diverseren, zeitlich und strukturell resilienteren sowie leistungsf{\"a}hi¬geren {\"O}kosystemen einhergeht, die somit intensiver und sicherer nachhaltig genutzt werden k{\"o}nnen. Die Nutzung einer kleinen Auswahl von {\"O}kosystemleistungen der Fl{\"u}sse und Seen durch den Menschen hat oftmals zu einer starken Reduktion der {\"o}kologischen Konnektivit{\"a}t, und in der Folge zu starken Verlusten bei anderen {\"O}kosystemleistungen gef{\"u}hrt. Die Ergebnisse der dargestellten Forschungen zeigen auch, dass die Entwicklung und Implementierung von Strategien zum integrierten Management von komplexen sozial-{\"o}kologischen Systemen wesentlich unterst{\"u}tzt werden kann, wenn die horizontale und vertikale Konnektivit{\"a}t gezielt entwickelt wird.}, language = {de} } @article{BernardezPregoVirginiaFilgueirasetal.2017, author = {Bernardez, Patricia and Prego, Ricardo and Virginia Filgueiras, Ana and Ospina-Alvarez, Natalia and Santos-Echeandia, Juan and Angel Alvarez-Vazquez, Miguel and Caetano, Miguel}, title = {Lithogenic sources, composition and intra-annual variability of suspended particulate matter supplied from rivers to the Northern Galician Rias (Bay of Biscay)}, series = {Journal of sea research}, volume = {130}, journal = {Journal of sea research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1385-1101}, doi = {10.1016/j.seares.2017.05.006}, pages = {73 -- 84}, year = {2017}, abstract = {Scarce research about small European rivers from non-human impacted areas to determine their natural background state has been undertaken. During the annual hydrological cycle of 2008-9 the patterns of particulate supply (SPM, POC, PON, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, V, Zn) from the rivers Sor, Mera Landro, Lourido and Landoi to the Northern Galician Rias (SW Bay of Biscay) were tackled. No differences in the composition of the SPM were detected for the studied rivers regarding Al, Fe and POC but the relative percentage of particulate trace elements (PTE) discriminate the rivers. So, Cr, Co and Ni in the Lourido, and Landoi rivers, and Cu in the Mera River, are controlled by watershed minerals of Ortegal Geological Complex while for the rest rivers PTE are by granitic and Ollo de Sapo bedrock watershed. Therefore, the imprint of PTE in the parental rocks of the river basins is reflected on the coastal sediments of the Rias. The main process controlling the dynamics and variations of chemical elements in the particulate form is the river discharge. This fact exemplifies that these rivers presents a natural behavior not being highly influenced by anthropogenic activities.}, language = {en} } @article{PurintonBookhagen2018, author = {Purinton, Benjamin and Bookhagen, Bodo}, title = {Measuring decadal vertical land-level changes from SRTM-C (2000) and TanDEM-X (∼ 2015) in the south-central Andes}, series = {Earth Surface Dynamics}, volume = {6}, journal = {Earth Surface Dynamics}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-6-971-2018}, pages = {971 -- 987}, year = {2018}, abstract = {In the arctic and high mountains it is common to measure vertical changes of ice sheets and glaciers via digital elevation model (DEM) differencing. This requires the signal of change to outweigh the noise associated with the datasets. Excluding large landslides, on the ice-free earth the land-level change is smaller in vertical magnitude and thus requires more accurate DEMs for differencing and identification of change. Previously, this has required meter to submeter data at small spatial scales. Following careful corrections, we are able to measure land-level changes in gravel-bed channels and steep hillslopes in the south-central Andes using the SRTM-C (collected in 2000) and the TanDEM-X (collected from 2010 to 2015) near-global 12-30m DEMs. Long-standing errors in the SRTM-C are corrected using the TanDEM-X as a control surface and applying cosine-fit co-registration to remove ∼ 1∕10 pixel (∼ 3m) shifts, fast Fourier transform (FFT) and filtering to remove SRTM-C short- and long-wavelength stripes, and blocked shifting to remove remaining complex biases. The datasets are then differenced and outlier pixels are identified as a potential signal for the case of gravel-bed channels and hillslopes. We are able to identify signals of incision and aggradation (with magnitudes down to ∼ 3m in the best case) in two  > 100km river reaches, with increased geomorphic activity downstream of knickpoints. Anthropogenic gravel excavation and piling is prominently measured, with magnitudes exceeding ±5m (up to  > 10m for large piles). These values correspond to conservative average rates of 0.2 to > 0.5myr-1 for vertical changes in gravel-bed rivers. For hillslopes, since we require stricter cutoffs for noise, we are only able to identify one major landslide in the study area with a deposit volume of 16±0.15×106m3. Additional signals of change can be garnered from TanDEM-X auxiliary layers; however, these are more difficult to quantify. The methods presented can be extended to any region of the world with SRTM-C and TanDEM-X coverage where vertical land-level changes are of interest, with the caveat that remaining vertical uncertainties in primarily the SRTM-C limit detection in steep and complex topography.}, language = {en} } @misc{PurintonBookhagen2018, author = {Purinton, Benjamin and Bookhagen, Bodo}, title = {Measuring decadal vertical land-level changes from SRTM-C (2000) and TanDEM-X (∼ 2015) in the south-central Andes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {480}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420487}, pages = {16}, year = {2018}, abstract = {In the arctic and high mountains it is common to measure vertical changes of ice sheets and glaciers via digital elevation model (DEM) differencing. This requires the signal of change to outweigh the noise associated with the datasets. Excluding large landslides, on the ice-free earth the land-level change is smaller in vertical magnitude and thus requires more accurate DEMs for differencing and identification of change. Previously, this has required meter to submeter data at small spatial scales. Following careful corrections, we are able to measure land-level changes in gravel-bed channels and steep hillslopes in the south-central Andes using the SRTM-C (collected in 2000) and the TanDEM-X (collected from 2010 to 2015) near-global 12-30m DEMs. Long-standing errors in the SRTM-C are corrected using the TanDEM-X as a control surface and applying cosine-fit co-registration to remove ∼ 1∕10 pixel (∼ 3m) shifts, fast Fourier transform (FFT) and filtering to remove SRTM-C short- and long-wavelength stripes, and blocked shifting to remove remaining complex biases. The datasets are then differenced and outlier pixels are identified as a potential signal for the case of gravel-bed channels and hillslopes. We are able to identify signals of incision and aggradation (with magnitudes down to ∼ 3m in the best case) in two  > 100km river reaches, with increased geomorphic activity downstream of knickpoints. Anthropogenic gravel excavation and piling is prominently measured, with magnitudes exceeding ±5m (up to  > 10m for large piles). These values correspond to conservative average rates of 0.2 to > 0.5myr-1 for vertical changes in gravel-bed rivers. For hillslopes, since we require stricter cutoffs for noise, we are only able to identify one major landslide in the study area with a deposit volume of 16±0.15×106m3. Additional signals of change can be garnered from TanDEM-X auxiliary layers; however, these are more difficult to quantify. The methods presented can be extended to any region of the world with SRTM-C and TanDEM-X coverage where vertical land-level changes are of interest, with the caveat that remaining vertical uncertainties in primarily the SRTM-C limit detection in steep and complex topography.}, language = {en} }