@article{FudickarLinker2019, author = {Fudickar, Werner and Linker, Torsten}, title = {Theoretical insights into the effect of solvents on the [4+2] cycloaddition of singlet oxygen to substituted anthracenes}, series = {Journal of physical organic chemistry}, volume = {32}, journal = {Journal of physical organic chemistry}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {0894-3230}, doi = {10.1002/poc.3951}, pages = {9}, year = {2019}, abstract = {The [4 + 2] cycloadditions of singlet oxygen to 9,10-diphenylanthracene (1) and the meta and para isomers of 9,10-dipyridylanthracene (2m/p) and 9,10-methoxyphenylanthracene (3m/p) have been studied by density functional calculations in the gas phase at the UB3LYP/6-31G* level and for the first time in solvents at the conductor-like polarizable continuum model (CPCM) UM062X/6-31G* level. The differences in calculated transition state (TS) energies derived from this method are in line with experimentally observed reactivity orders in solution. For the gas-phase reaction, the first TS of the stepwise pathway (TS1) has biradical character, and its energy lies below the energy of the TS of the concerted path (TSconc). In contrast, in the solvent acetonitrile, TS1 resembles a zwitterion and lies significantly higher than the TSconc. Thus, a concerted mechanism applies in solvents, and the energy gap between the TS of the two processes decreases with decreasing polarity. A change from a pyridyl against a methoxyphenyl substituent in the para position causes a maximal reduction of the activation barrier by approximately 1.7 kcal/mol, resulting in a fivefold increased reactivity.}, language = {en} } @article{FudickarLinker2021, author = {Fudickar, Werner and Linker, Torsten}, title = {Photooxygenation of naphthalene}, series = {ChemPhotoChem}, volume = {5}, journal = {ChemPhotoChem}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, doi = {10.1002/cptc.202100097}, pages = {1004 -- 1008}, year = {2021}, abstract = {The photooxygenation of naphthalene to the corresponding endoperoxide (EPO) under various conditions is described. Substantial conversion is only observed at -10 degrees C and after more than two days, indicating that the [4+2] cycloaddition of singlet oxygen to this acene proceeds much more slowly than corresponding reactions of substituted naphthalenes, a rate constant of k = 5.4 +/- 0.3 M(-1)s(-1) was determined by competition kinetics. Another problem is the thermal lability and photochemical cleavage of the naphthalene EPO. We investigated the mechanism of this radical process depending on the light source and sensitizer in comparison to known cyclohexadiene EPO. Thus, bisepoxides and keto epoxides are formed after homolysis of the O-O bond by irradiation with sodium lamps or blue LEDs and subsequent cyclization. This process is accelerated by the sensitizers methylene blue and 9,10-dicyanoanthracene, indicating an electron transfer mechanism. Finally, the cleavage of the peroxidic bond is inhibited with red LEDs, and photooxygenation under such conditions affords 20 \% EPO. Thus, we could demonstrate that contrary to literature statements singlet oxygen does indeed react with naphthalene.}, language = {en} } @article{BauchFudickarLinker2021, author = {Bauch, Marcel and Fudickar, Werner and Linker, Torsten}, title = {Stereoselective [4+2] Cycloaddition of Singlet Oxygen to Naphthalenes Controlled by Carbohydrates}, series = {Molecules : a journal of synthetic chemistry and natural product chemistry}, volume = {16}, journal = {Molecules : a journal of synthetic chemistry and natural product chemistry}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules26040804}, pages = {17}, year = {2021}, abstract = {Stereoselective reactions of singlet oxygen are of current interest. Since enantioselective photooxygenations have not been realized efficiently, auxiliary control is an attractive alternative. However, the obtained peroxides are often too labile for isolation or further transformations into enantiomerically pure products. Herein, we describe the oxidation of naphthalenes by singlet oxygen, where the face selectivity is controlled by carbohydrates for the first time. The synthesis of the precursors is easily achieved starting from naphthoquinone and a protected glucose derivative in only two steps. Photooxygenations proceed smoothly at low temperature, and we detected the corresponding endoperoxides as sole products by NMR. They are labile and can thermally react back to the parent naphthalenes and singlet oxygen. However, we could isolate and characterize two enantiomerically pure peroxides, which are sufficiently stable at room temperature. An interesting influence of substituents on the stereoselectivities of the photooxygenations has been found, ranging from 51:49 to up to 91:9 dr (diastereomeric ratio). We explain this by a hindered rotation of the carbohydrate substituents, substantiated by a combination of NOESY measurements and theoretical calculations. Finally, we could transfer the chiral information from a pure endoperoxide to an epoxide, which was isolated after cleavage of the sugar chiral auxiliary in enantiomerically pure form.}, language = {en} }