@article{SyrykhNazarovaHerzschuhetal.2017, author = {Syrykh, Lydmila S. and Nazarova, Larisa B. and Herzschuh, Ulrike and Subetto, D. A. and Grekov, I. M.}, title = {Reconstruction of palaeoecological and palaeoclimatic conditions of the Holocene in the south of the Taimyr according to an analysis of lake sediments}, series = {Contemporary Problems of Ecology}, volume = {10}, journal = {Contemporary Problems of Ecology}, publisher = {Pleiades Publ.}, address = {New York}, issn = {1995-4255}, doi = {10.1134/S1995425517040114}, pages = {363 -- 369}, year = {2017}, abstract = {A sediment core from Khatanga-12 Lake (Taimyr Peninsula, Krasnoyarsk krai) has been studied. The 131.5-cm-long core covers ca. 7100 years of sedimentation. Chironomid analysis, a qualitative reconstruction of the paleoenvironment in the region, and a quantitative reconstruction of variations of the mean July air temperature and in the water depth of the lake have been performed using Northern Russia chironomid-inferred mean July temperature models (Nazarova et al., 2008, 2011, 2015). Khatanga-12 Lake was formed during the Middle Holocene warming as a result of thermokarst processes. The development of the lake ecosystem at different stages of its development was influenced by climatic and cryolithogenic factors. The Middle Holocene warming, which occurred around 7100-6250 cal. years BP, activated thermokarst processes and resulted in the formation of the lake basin. Later, between 6250 and 4500 cal. years BP, a period of cooling took place, as is proved by chironomid analysis. The bottom sediments of the lake during this period were formed by erosion processes on the lake shores. The reconstructed conditions were close to the modern after 2500 cal. years BP.}, language = {en} } @article{OwenMuiruriLowensteinetal.2018, author = {Owen, Richard Bernhart and Muiruri, Veronica M. and Lowenstein, Tim K. and Renaut, Robin W. and Rabideaux, Nathan and Luo, Shangde and Deino, Alan L. and Sier, Mark J. and Dupont-Nivet, Guillaume and McNulty, Emma P. and Leet, Kennie and Cohen, Andrew and Campisano, Christopher and Deocampo, Daniel and Shen, Chuan-Chou and Billingsley, Anne and Mbuthia, Anthony}, title = {Progressive aridification in East Africa over the last half million years and implications for human evolution}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {44}, publisher = {National Academy of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1801357115}, pages = {11174 -- 11179}, year = {2018}, abstract = {Evidence for Quaternary climate change in East Africa has been derived from outcrops on land and lake cores and from marine dust, leaf wax, and pollen records. These data have previously been used to evaluate the impact of climate change on hominin evolution, but correlations have proved to be difficult, given poor data continuity and the great distances between marine cores and terrestrial basins where fossil evidence is located. Here, we present continental coring evidence for progressive aridification since about 575 thousand years before present (ka), based on Lake Magadi (Kenya) sediments. This long-term drying trend was interrupted by many wet-dry cycles, with the greatest variability developing during times of high eccentricity-modulated precession. Intense aridification apparent in the Magadi record took place between 525 and 400 ka, with relatively persistent arid conditions after 350 ka and through to the present. Arid conditions in the Magadi Basin coincide with the Mid-Brunhes Event and overlap with mammalian extinctions in the South Kenya Rift between 500 and 400 ka. The 525 to 400 ka arid phase developed in the South Kenya Rift between the period when the last Acheulean tools are reported (at about 500 ka) and before the appearance of Middle Stone Age artifacts (by about 320 ka). Our data suggest that increasing Middle- to Late-Pleistocene aridification and environmental variability may have been drivers in the physical and cultural evolution of Homo sapiens in East Africa.}, language = {en} }