@article{MonrealIberoWeilbacherWendtetal.2015, author = {Monreal-Ibero, Ana and Weilbacher, Peter Michael and Wendt, Martin and Selman, Fernando and Lallement, Rosine and Brinchmann, Jarle and Kamann, Sebastian and Sandin, Christer}, title = {Towards DIB mapping in galaxies beyond 100 Mpc A radial profile of the lambda 5780.5 diffuse interstellar band in AM1353-272 B}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {576}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201525854}, pages = {4}, year = {2015}, abstract = {Context. Diffuse interstellar bands (DIBs) are non-stellar weak absorption features of unknown origin found in the spectra of stars viewed through one or several clouds of the interstellar medium (ISM). Research of DIBs outside the Milky Way is currently very limited. In particular, spatially resolved investigations of DIBs outside of the Local Group are, to our knowledge, inexistent. Aims. In this contribution, we explore the capability of the high-sensitivity integral field spectrograph, MUSE, as a tool for mapping diffuse interstellar bands at distances larger than 100 Mpc. Methods. We used MUSE commissioning data for AM1353-272 B, the member with the highest extinction of the Dentist's Chair, an interacting system of two spiral galaxies. High signal-to-noise spectra were created by co-adding the signal of many spatial elements distributed in a geometry of concentric elliptical half-rings. Results. We derived decreasing radial profiles for the equivalent width of the lambda 5780.5 DIB both in the receding and approaching side of the companion galaxy up to distances of similar to 4.6 kpc from the centre of the galaxy. The interstellar extinction as derived from the Ha/H beta line ratio displays a similar trend, with decreasing values towards the external parts. This translates into an intrinsic correlation between the strength of the DIB and the extinction within AM1353-272 B, consistent with the currently existing global trend between these quantities when using measurements for Galactic and extragalactic sightlines. Conclusions. It seems feasible to map the DIB strength in the Local Universe, which has up to now only been performed for the Milky Way. This offers a new approach to studying the relationship between DIBs and other characteristics and species of the ISM in addition to using galaxies in the Local Group or sightlines towards very bright targets outside the Local Group.}, language = {en} } @article{GuberRichter2016, author = {Guber, Christoph R. and Richter, Philipp}, title = {Dust depletion of Ca and Ti in QSO absorption-line systems}, series = {Wiley Interdisciplinary Reviews : Water}, volume = {591}, journal = {Wiley Interdisciplinary Reviews : Water}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201628466}, pages = {16}, year = {2016}, abstract = {Aims. To explore the role of titanium-and calcium-dust depletion in gas in and around galaxies, we systematically study Ti/Ca abundance ratios in intervening absorption-line systems at low and high redshift. Methods. We investigate high-resolution optical spectra obtained by the UVES instrument at the Very Large Telescope (VLT) and spectroscopically analyze 34 absorption-line systems at z <= 0.5 to measure column densities (or limits) for Ca II and Ti II. We complement our UVES data set with previously published absorption-line data on Ti/Ca for redshifts up to z similar to 3.8. Our absorber sample contains 110 absorbers including damped Lyman alpha systems (DLAs), sub-DLAs, and Lyman-Limit systems (LLS). We compare our Ti/Ca findings with results from the MilkyWay and the Magellanic Clouds and discuss the properties of Ti/Ca absorbers in the general context of quasar absorption-line systems. Results. Our analysis indicates that there are two distinct populations of absorbers with either high or low Ti/Ca ratios with a separation at [Ti/Ca] approximate to 1. While the calcium-dust depletion in most of the absorbers appears to be severe, the titanium depletions are mild in systems with high Ti/Ca ratios. The derived trend indicates that absorbers with high Ti/Ca ratios have dust-to-gas ratios that are substantially lower than in the Milky Way. We characterize the overall nature of the absorbers by correlating Ti/Ca with other observables (e.g., metallicity, velocity-component structure) and by modeling the ionization properties of singly-ionized Ca and Ti in different environments. Conclusions. We conclude that Ca II and Ti II bearing absorption-line systems trace predominantly neutral gas in the disks and inner halo regions of galaxies, where the abundance of Ca and Ti reflects the local metal and dust content of the gas. Our study suggests that the Ti/Ca ratio represents a useful measure for the gas-to-dust ratio and overall metallicity in intervening absorption-line systems.}, language = {en} } @article{GeHeYan2016, author = {Ge, J. X. and He, J. H. and Yan, Huirong}, title = {Effects of turbulent dust grain motion to interstellar chemistry}, series = {Monthly notices of the Royal Astronomical Society}, volume = {455}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stv2560}, pages = {3570 -- 3587}, year = {2016}, abstract = {Theoretical studies have revealed that dust grains are usually moving fast through the turbulent interstellar gas, which could have significant effects upon interstellar chemistry by modifying grain accretion. This effect is investigated in this work on the basis of numerical gas-grain chemical modelling. Major features of the grain motion effect in the typical environment of dark clouds (DC) can be summarized as follows: (1) decrease of gas-phase (both neutral and ionic) abundances and increase of surface abundances by up to 2-3 orders of magnitude; (2) shifts of the existing chemical jumps to earlier evolution ages for gas-phase species and to later ages for surface species by factors of about 10; (3) a few exceptional cases in which some species turn out to be insensitive to this effect and some other species can show opposite behaviours too. These effects usually begin to emerge from a typical DC model age of about 10(5) yr. The grain motion in a typical cold neutral medium (CNM) can help overcome the Coulomb repulsive barrier to enable effective accretion of cations on to positively charged grains. As a result, the grain motion greatly enhances the abundances of some gas-phase and surface species by factors up to 2-6 or more orders of magnitude in the CNM model. The grain motion effect in a typical molecular cloud (MC) is intermediate between that of the DC and CNM models, but with weaker strength. The grain motion is found to be important to consider in chemical simulations of typical interstellar medium.}, language = {en} } @article{WendtHusserKamannetal.2017, author = {Wendt, Martin and Husser, Tim-Oliver and Kamann, Sebastian and Monreal-Ibero, Ana and Richter, Philipp and Brinchmann, Jarle and Dreizler, Stefan and Weilbacher, Peter Michael and Wisotzki, Lutz}, title = {Mapping diffuse interstellar bands in the local ISM on small scales via MUSE 3D spectroscopy A pilot study based on globular cluster NGC 6397}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {607}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201629816}, pages = {16}, year = {2017}, abstract = {Context. We map the interstellar medium (ISM) including the diffuse interstellar bands (DIBs) in absorption toward the globular cluster NGC6397 using VLT/MUSE. Assuming the absorbers are located at the rim of the Local Bubble we trace structures on the order of mpc (milliparsec, a few thousand AU). Aims. We aimed to demonstrate the feasibility to map variations of DIBs on small scales with MUSE. The sightlines defined by binned stellar spectra are separated by only a few arcseconds and we probe the absorption within a physically connected region. Methods. This analysis utilized the fitting residuals of individual stellar spectra of NGC6397 member stars and analyzed lines from neutral species and several DIBs in Voronoi-binned composite spectra with high signal-to-noise ratio (S/N). Results. This pilot study demonstrates the power of MUSE for mapping the local ISM on very small scales which provides a new window for ISM observations. We detect small scale variations in Na-I and K-I as well as in several DIBs within few arcseconds, or mpc with regard to the Local Bubble. We verify the suitability of the MUSE 3D spectrograph for such measurements and gain new insights by probing a single physical absorber with multiple sight lines.}, language = {en} } @article{MonrealIberoWeilbacherWendt2018, author = {Monreal-Ibero, Ana and Weilbacher, Peter Michael and Wendt, Martin}, title = {Diffuse interstellar bands lambda 5780 and lambda 5797 in the Antennae Galaxy as seen by MUSE}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {615}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201732178}, pages = {12}, year = {2018}, abstract = {Context. Diffuse interstellar bands (DIBs) are faint spectral absorption features of unknown origin. Research on DIBs beyond the Local Group is very limited and will surely blossom in the era of the Extremely Large Telescopes. However, we can already start paving the way. One possibility that needs to be explored is the use of high-sensitivity integral field spectrographs. Aims. Our goals are twofold. First, we aim to derive reliable mapping of at least one DIB in a galaxy outside the Local Group. Second, we want to explore the relation between DIBs and other properties of the interstellar medium (ISM) in the galaxy. Methods. We use Multi Unit Spectroscopic Explorer (MUSE) data for the Antennae Galaxy, the closest major galaxy merger. High signal-to-noise spectra were created by co-adding the signal of many spatial elements with the Voronoi binning technique. The emission of the underlying stellar population was modelled and substracted with the STARLIGHT spectral synthesis code. Flux and equivalent width of the features of interest were measured by means of fitting to Gaussian functions. Conclusions. The results illustrate the enormous potential of integral field spectrographs for extragalactic DIB research.}, language = {en} } @article{GuberRichterWendt2018, author = {Guber, Christoph Rudolf and Richter, Philipp and Wendt, Martin}, title = {Multiple origins for the DLA at zabs = 0.313 toward PKS 1127-145 indicated by a complex dust depletion pattern of Ca, Ti, and Mn}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {609}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201730984}, pages = {9}, year = {2018}, abstract = {Aims: We aim to investigate the dust depletion properties of optically thick gas in and around galaxies and its origin we study in detail the dust depletion patterns of Ti, Mn, and Ca in the multi-component damped Lyman alpha (DLA) absorber at z(abs) = 0.313 toward the quasar PKS 1127-145. Methods: We performed a detailed spectral analysis of the absorption profiles of Ca II, Mn II, TIII, and Na I associated with the DLA toward PKS 1127-145, based on optical high-resolution data obtained with the UVES instrument at the Very Large Telescope. We obtained column densities and Doppler-parameters for the ions listed above and determine their gas-phase abundances, from which we conclude on their dust depletion properties. We compared the Ca and Ti depletion properties of this DLA with that of other DLAs. Results: One of the six analyzed absorption components (component 3) shows a striking underabundance of Ti and Mn in the gas-phase, indicating the effect of dust depletion for these elements and a locally enhanced dust-to-gas ratio. In this DLA and in other similar absorbers, the Mn II abundance follows that of Ti II very closely, implying that both ions are equally sensitive to the dust depletion effects. Conclusions: Our analysis indicates that the DLA toward PKS 1127 145 has multiple origins. With its narrow line width and its strong dust depletion, component 3 points toward the presence of a neutral gas disk from a faint LSB galaxy in front of PKS 1127 145, while the other, more diffuse and dust-poor, absorption components possibly are related to tidal gas features from the interaction between the various, optically confirmed galaxy-group members. In general, the Mn/Ca II ratio in sub-DLAs and DLAs possibly serves as an important indicator to discriminate between dust-rich and dust-poor in neutral gas in and around galaxies.}, language = {en} }