@article{RoellyRuszel2014, author = {Roelly, Sylvie and Ruszel, W. M.}, title = {Propagation of gibbsianness for infinite-dimensional diffusions with space-time interaction}, series = {Markov processes and related fields}, volume = {20}, journal = {Markov processes and related fields}, number = {4}, publisher = {Polymat}, address = {Moscow}, issn = {1024-2953}, pages = {653 -- 674}, year = {2014}, abstract = {We consider infinite-dimensional diffusions where the interaction between the coordinates has a finite extent both in space and time. In particular, it is not supposed to be smooth or Markov. The initial state of the system is Gibbs, given by a strong summable interaction. If the strongness of this initial interaction is lower than a suitable level, and if the dynamical interaction is bounded from above in a right way, we prove that the law of the diffusion at any time t is a Gibbs measure with absolutely summable interaction. The main tool is a cluster expansion in space uniformly in time of the Girsanov factor coming from the dynamics and exponential ergodicity of the free dynamics to an equilibrium product measure.}, language = {en} } @article{HoudebertZass2022, author = {Houdebert, Pierre and Zass, Alexander}, title = {An explicit Dobrushin uniqueness region for Gibbs point processes with repulsive interactions}, series = {Journal of applied probability / Applied Probability Trust}, volume = {59}, journal = {Journal of applied probability / Applied Probability Trust}, number = {2}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {0021-9002}, doi = {10.1017/jpr.2021.70}, pages = {541 -- 555}, year = {2022}, abstract = {We present a uniqueness result for Gibbs point processes with interactions that come from a non-negative pair potential; in particular, we provide an explicit uniqueness region in terms of activity z and inverse temperature beta. The technique used relies on applying to the continuous setting the classical Dobrushin criterion. We also present a comparison to the two other uniqueness methods of cluster expansion and disagreement percolation, which can also be applied for this type of interaction.}, language = {en} }