@article{AttenbergerMoussaBrietzkeetal.2015, author = {Attenberger, Bianca and Moussa, Mehdi El Sayed and Brietzke, Thomas Martin and Vreshch, Volodimir and Holdt, Hans-J{\"u}rgen and Lescop, Christophe and Scheer, Manfred}, title = {Discrete Polymetallic Arrangements of Ag-I and Cu-I Ions Based on Multiple Bridging Phosphane Ligands and pi-pi Interactions}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201500445}, pages = {2934 -- 2938}, year = {2015}, abstract = {A simple and straightforward approach to new polymetallic Ag-I and Cu-I supramolecules is presented. The reaction of N,P,N,P,N ligand 2 with Ag-I ions affords a trimetallic complex bearing a triangular Ag-3 core; metallophilic interactions are stabilized by ligands that display a multiple bridging coordination mode as 10-electron donors. Heteroleptic polymetallic Ag-I and Cu-I complexes based on ligand 2 and the 1,12-diazaperylene (dape) ligand are obtained by an alternative molecular organization of the polymetallic arrays compared to that in homoleptic complexes of ligand 2.}, language = {en} } @article{StorchMaierWessigetal.2016, author = {Storch, Golo and Maier, Frank and Wessig, Pablo and Trapp, Oliver}, title = {Rotational Barriers of Substituted BIPHEP Ligands: A Comparative Experimental and Theoretical Study}, series = {European journal of organic chemistry}, volume = {22}, journal = {European journal of organic chemistry}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201600836}, pages = {5123 -- 5126}, year = {2016}, abstract = {The interconversion barriers of 14 different 3,3- and 5,5-disubstituted tropos BIPHEP [2,2-bis(diphenylphosphino)-1,1-biphenyl] and BIPHEP(O) [2,2-bis(diphenylphosphoryl)-1,1-biphenyl] ligands were investigated by enantioselective dynamic high performance liquid chromatography (DHPLC) and DFT calculations using the B3LYP/6-31G* and M06-2X/6-31G* levels of theory. The experimentally determined enantiomerization barriers varied from 86.8 to 101.4 kJmol(-1) and were found to be in excellent agreement with the calculated data. The root-mean-square deviations are 7.3 kJmol(-1) for the B3LYP functional and 11.3 kJmol(-1) for the M06-2X method.}, language = {en} }