@article{LiChenDongetal.2014, author = {Li, Jian and Chen, You-Peng and Dong, Yun-Peng and Yu, Cal-Hong and Lu, Yong-Ping and Xiao, Xiao-Min and Hocher, Berthold}, title = {The impact of umbilical blood flow regulation on fetal development differs in diabetic and non-diabetic pregnancy}, series = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie}, volume = {39}, journal = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie}, number = {4}, publisher = {Karger}, address = {Basel}, issn = {1420-4096}, doi = {10.1159/000355815}, pages = {369 -- 377}, year = {2014}, abstract = {Background/Aims: Diabetes is well-known to influence endothelial function. Endothelial function and blood flow regulation might be different in diabetic and non-diabetic pregnancy. However, the impact of umbilical blood flow regulation in gestational diabetes on fetal development is unknown so far. Methods: In a prospective birth cohort study, we analyzed the association of the umbilical artery Doppler indices (pulsatility index, resistance index and systolic/diastolic ratio) and fetal size measures (biparietal diameter, head circumference, abdominal circumference, femur length and birth weight) in 519 non-gestational diabetes mellitus pregnancies (controls) and 226 gestational diabetes mellitus pregnancies in middle (day 160.32 +/- 16.29 of gestation) and late (day 268.12 +/- 13.04 of gestation) pregnancy. Results: Multiple regression analysis considering confounding factors (gestational day of ultrasound examination, offspring sex, maternal body mess index before pregnancy, maternal age at delivery, maternal body weight at delivery and maternal hypertension) showed that umbilical artery Doppler indices (pulsatility index, resistance index and systolic/diastolic ratio) were associated with fetal head circumference and femur length in middle gestational diabetes mellitus pregnancy but not in non-gestational diabetes mellitus pregnancy. Head circumference, biparietal diameter, abdominal circumference and femur length in mid gestation were smaller in fetus of gestational diabetes mellitus pregnancy versus non-gestational diabetes mellitus pregnancy. In contrast to non-gestational diabetes mellitus pregnancy in late gestation, umbilical artery Doppler indices in gestational diabetes mellitus pregnancy were not associated with ultrasound measures of fetal growth. Birth weight was slightly increased in gestational diabetes mellitus pregnancy as compared to non-gestational diabetes mellitus pregnancy. Conclusions: The impact of umbilical blood flow on fetal growth is time dependent in human gestational diabetes mellitus and non-gestational diabetes mellitus pregnancy. In gestational diabetes mellitus pregnancy umbilical blood flow is critical for organ development in much earlier stages of pregnancy as compared to non-gestational diabetes mellitus pregnancy. The physiological and molecular pathways why there is a catch up growth in later times of gestational diabetes mellitus pregnancy resulting in larger gestational diabetes mellitus babies at birth needs to be addressed in further studies.}, language = {en} } @article{vonWebskyHasanReichetzederetal.2018, author = {von Websky, Karoline and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Reichetzeder, Christoph and Tsuprykov, Oleg and Hocher, Berthold}, title = {Impact of vitamin D on pregnancy-related disorders and on offspring outcome}, series = {The Journal of Steroid Biochemistry and Molecular Biology}, volume = {180}, journal = {The Journal of Steroid Biochemistry and Molecular Biology}, publisher = {Elsevier}, address = {Oxford}, issn = {0960-0760}, doi = {10.1016/j.jsbmb.2017.11.008}, pages = {51 -- 64}, year = {2018}, abstract = {Observational studies from all over the world continue to find high prevalence rates of vitamin D insufficiency and deficiency in many populations, including pregnant women. Beyond its classical function as a regulator of calcium and phosphate metabolism, vitamin D elicits numerous effects in the human body. Current evidence highlights a vital role of vitamin D in mammalian gestation. During pregnancy, adaptations in maternal vitamin D metabolism lead to a physiologic increase of vitamin D levels, mainly because of an increased renal production, although other potential sources like the placenta are being discussed. A sufficient supply of mother and child with calcium and vitamin D during pregnancy ensures a healthy bone development of the fetus, whereas lack of either of these nutrients can lead to the development of rickets in the child. Moreover, vitamin D insufficiency during pregnancy has consistently been associated with adverse maternal and neonatal pregnancy outcomes. In multitudinous studies, low maternal vitamin D status was associated with a higher risk for pre-eclampsia, gestational diabetes mellitus and other gestational diseases. Likewise, several negative consequences for the fetus have been reported, including fetal growth restriction, increased risk of preterm birth and a changed susceptibility for later-life diseases. However, study results are diverging and causality has not been proven so far. Meta-analyses on the relationship between maternal vitamin D status and pregnancy outcomes revealed a wide heterogeneity of studied populations and the applied methodology in vitamin D assessment. Until today, clinical guidelines for supplementation cannot be based on high-quality evidence and it is not clear if the required intake for pregnant women differs from non-pregnant women. Long-term safety data of vitamin D supplementation in pregnant women has not been established and overdosing of vitamin D might have unfavorable effects, especially in mothers and newborns with mutations of genes involved in vitamin D metabolism. Reliable data from large observational and interventional randomized control trials are urgently needed as a basis for any detailed and safe recommendations for supplementation in the general population and, most importantly, in pregnant women. This is of utmost importance, as ensuring a sufficient vitamin D-supply of mother and child implies a great potential for the prevention of birth complications and development of diseases.}, language = {en} }