@article{HerzschuhNiBirksetal.2011, author = {Herzschuh, Ulrike and Ni, Jian and Birks, H. John B. and B{\"o}hner, J{\"u}rgen}, title = {Driving forces of mid-Holocene vegetation shifts on the upper Tibetan Plateau, with emphasis on changes in atmospheric CO2 concentrations}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {30}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {15-16}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2011.03.007}, pages = {1907 -- 1917}, year = {2011}, abstract = {Numerous pollen records across the upper Tibetan Plateau indicate that in the early part of the mid-Holocene, Kobresia-rich high-alpine meadows invaded areas formerly dominated by alpine steppe vegetation rich in Artemisia. We examine climate, land-use, and CO2 concentration changes as potential drivers for this marked vegetation change. The climatic implications of these vegetational shifts are explored by applying a newly developed pollen-based moisture-balance transfer-function to fossil pollen spectra from Koucha Lake on the north-eastern Tibetan Plateau (34.0 degrees N; 97.2 degrees E; 4540 m a.s.l.) and Xuguo Lake on the central Tibetan Plateau (31.97 degrees N; 90.3 degrees E; 4595 m a.s.l.), both located in the meadow-steppe transition zone. Reconstructed moisture-balances were markedly reduced (by similar to 150-180 mm) during the early mid-Holocene compared to the late-Holocene. These findings contradict most other records from the Indian monsoonal realm and also most non-pollen records from the Tibetan Plateau that indicate a rather wet early- and mid-Holocene. The extent and timing of anthropogenic land-use involving grazing by large herbivores on the upper Tibetan Plateau and its possible impacts on high-alpine vegetation are still mostly unknown due to the lack of relevant archaeological evidence. Arguments against a mainly anthropogenic origin of Kobresia high-alpine meadows are the discovery of the widespread expansion of obviously 'natural' Kobresia meadows on the south-eastern Tibetan Plateau during the Lateglacial period indicating the natural origin of this vegetation type and the lack of any concurrence between modern human-driven vegetation shifts and the mid-Holocene compositional changes. Vegetation types are known to respond to atmospheric CO2 concentration changes, at least on glacial-interglacial scales. This assumption is confirmed by our sensitivity study where we model Tibetan vegetation at different CO2 concentrations of 375 (present-day), 260 (early Holocene), and 650 ppm (future scenario) using the BIOME4 global vegetation model. Previous experimental studies confirm that vegetation growing on dry and high sites is particularly sensitive to CO2 changes. Here we propose that the replacement of drought-resistant alpine steppes (that are well adapted to low CO2 concentrations) by mesic Kobresia meadows can, at least, be partly interpreted as a response to the increase of CO2 concentration since 7000 years ago due to fertilization and water-saving effects. Our hypothesis is corroborated by former CO2 fertilization experiments performed on various dry grasslands and by the strong recent expansion of high-alpine meadows documented by remote sensing studies in response to recent CO2 increases.}, language = {en} } @article{WangLiuHerzschuhetal.2012, author = {Wang, Yongbo and Liu, Xingqi and Herzschuh, Ulrike and Yang, Xiangdong and Birks, H. John B. and Zhang, Enlou and Tong, Guobang}, title = {Temporally changing drivers for late-Holocene vegetation changes on the northern Tibetan Plateau}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {353}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2012.06.022}, pages = {10 -- 20}, year = {2012}, abstract = {Fossil pollen records have been widely used as indicators of past changes in vegetation and variations in climate. The driving mechanisms behind these vegetation changes have, however, remained unclear. In order to evaluate vegetation changes that have occurred in the northern part of the Tibetan Plateau and the possible drivers behind these changes, we have applied a moving-window Redundancy Analysis (RDA) to high resolution (10-15 years) pollen and sedimentary data from Lake Kusai covering the last 3770 years. Our analyses reveal frequent fluctuations in the relative abundances of alpine steppe and alpine desert components. The sedimentary proxies (including total organic carbon content, total inorganic carbon content, and "end-member" indices from grain-size analyses) that explain statistically some of the changes in the pollen assemblage vary significantly with time, most probably reflecting multiple underlying driving processes. Climate appears to have had an important influence on vegetation changes when conditions were relatively wet and stable. However, a gradual decrease in vegetation cover was identified after 1500 cal a BP, after which the vegetation appears to have been affected more by extreme events such as dust-storms or fluvial erosion than by general climatic trends. Furthermore, pollen spectra over the last 600 years are shown by Procrustes analysis to be statistically different from those recovered from older samples, which we attribute to increased human impact that resulted in unprecedented changes to the vegetation composition. Overall, changes in vegetation and climate on the northern part of the Tibetan Plateau appear to have roughly followed the evolution of the Asian Summer Monsoon. After taking into account the highly significant millennial (1512 years) periodicity revealed by time-series analysis, the regional vegetation and climate changes also show variations that appear to match variations in the mid-latitude westerlies.}, language = {en} } @article{FritzHerzschuhWetterichetal.2012, author = {Fritz, Michael and Herzschuh, Ulrike and Wetterich, Sebastian and Lantuit, Hugues and De Pascale, Gregory P. and Pollard, Wayne H. and Schirrmeister, Lutz}, title = {Late glacial and holocene sedimentation, vegetation, and climate history from easternmost Beringia (northern Yukon Territory, Canada)}, series = {Quaternary research : an interdisciplinary journal}, volume = {78}, journal = {Quaternary research : an interdisciplinary journal}, number = {3}, publisher = {Elsevier}, address = {San Diego}, issn = {0033-5894}, doi = {10.1016/j.yqres.2012.07.007}, pages = {549 -- 560}, year = {2012}, abstract = {Beringian climate and environmental history are poorly characterized at its easternmost edge. Lake sediments from the northern Yukon Territory have recorded sedimentation, vegetation, summer temperature and precipitation changes since similar to 16 cal ka BP. Herb-dominated tundra persisted until similar to 14.7 cal ka BP with mean July air temperatures <= 5 degrees C colder and annual precipitation 50 to 120 mm lower than today. Temperatures rapidly increased during the Bolling/Allerod interstadial towards modern conditions, favoring establishment of Betula-Salix shrub tundra. Pollen-inferred temperature reconstructions recorded a pronounced Younger Dryas stadial in east Beringia with a temperature drop of similar to 1.5 degrees C (similar to 2.5 to 3.0 degrees C below modern conditions) and low net precipitation (90 to 170 mm) but show little evidence of an early Holocene thermal maximum in the pollen record. Sustained low net precipitation and increased evaporation during early Holocene warming suggest a moisture-limited spread of vegetation and an obscured summer temperature maximum. Northern Yukon Holocene moisture availability increased in response to a retreating Laurentide Ice Sheet, postglacial sea level rise, and decreasing summer insolation that in turn led to establishment of Alnus-Berula shrub tundra from similar to 5 cal ka BP until present, and conversion of a continental climate into a coastal-maritime climate near the Beaufort Sea.}, language = {en} } @article{RoeselGrossart2012, author = {Roesel, Stefan and Grossart, Hans-Peter}, title = {Contrasting dynamics in activity and community composition of free-living and particle-associated bacteria in spring}, series = {Aquatic microbial ecology : international journal}, volume = {66}, journal = {Aquatic microbial ecology : international journal}, number = {2}, publisher = {Institute of Mathematical Statistics}, address = {Oldendorf Luhe}, issn = {0948-3055}, doi = {10.3354/ame01568}, pages = {169 -- +}, year = {2012}, abstract = {Phytoplankton development affects the community structure and dynamics of freshwater bacteria by changing the availability of nutrients, algal exudates and biological surfaces. To elucidate these effects of phytoplankton development in spring in oligotrophic Lake Stechlin (Germany), we measured limnological and biological parameters, including the bacterial community composition (BCC), at the depth of the highest chlorophyll a concentration. To increase the resolution of BCC measurements, we separated particle-associated (PA) and free-living (FL) bacteria using serial filtration through 5.0 and 0.2 mu m pore size filters, respectively. The BCC of ultramicrobacteria was also determined by collecting the 0.2 mu m filtrate on 0.1 mu m filters. Changes in the community composition of Bacteria and particularly of Actinobacteria, one of the most important bacterial groups in temperate freshwater habitats, were studied via DGGE analysis of PCR-amplified 16S rRNA gene fragments. Patterns in BCC dynamics of FL Bacteria and Actinobacteria remained fairly constant throughout the study period, while patterns of PA Bacteria were more variable over time. At the breakdown of the diatom spring bloom, bacterial production and abundance sharply increased, indicating a close coupling between heterotrophic bacteria and algal detritus. The succession in BCC revealed life-style dependent patterns related to specific environmental variables. Our results indicate independent dynamics of PA and FL Bacteria as well as Actinobacteria during succession of phytoplankton spring blooms. These differences in bacterial lifestyle can only be resolved when the PA and FL fractions of microorganisms are separated.}, language = {en} } @article{TianHerzschuhDallmeyeretal.2013, author = {Tian, Fang and Herzschuh, Ulrike and Dallmeyer, Anne and Xu, Qinghai and Mischke, Steffen and Biskaborn, Boris}, title = {Environmental variability in the monsoon-westerlies transition zone during the last 1200 years - lake sediment analyses from central Mongolia and supra-regional synthesis}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {73}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2013.05.005}, pages = {31 -- 47}, year = {2013}, abstract = {A high resolution multi proxy (pollen, grain size, total organic carbon) record from a small mountain lake (Lake Khuisiin; 46.6 degrees N, 101.8 degrees E; 2270 m a.s.l.) in the south eastern Khangai Mountains of central Mongolia has been used to explore changes in vegetation and climate over the last 1200 years. The pollen data indicates that the vegetation changed from dry steppe dominated by Poaceae and Artemisia (ca AD 760-950), to Larix forest steppe (ca AD 950-1170), Larix Betula forest steppe (ca AD 1170-1380), meadow dominated by Cyperaceae and Poaceae (ca AD 1380-1830), and Larix Betula forest steppe (after similar to AD 1830). The cold-wet period between AD 1380 and 1830 may relate to the Little Ice Age. Environmental changes were generally subtle and climate change seems to have been the major driver of variations in vegetation until at least the early part of the 20th century, suggesting that either the level of human activity was generally low, or the relationship between human activity and vegetation did not alter substantially between AD 760 and 1830. A review of centennial scale moisture records from China and Mongolia revealed that most areas experienced major changes at ca AD 1500 and AD 1900. However, the moisture availability since AD 1500 varied between sites, with no clear regional pattern or relationship to present day conditions. Both the reconstructions and the moisture levels simulation on a millennium scale performed in the MPI Earth System Model indicate that the monsoon-westerlies transition area shows a greater climate variability than those areas influenced by the westerlies, or by the summer monsoon only.}, language = {en} } @article{WischnewskiHerzschuhRuehlandetal.2014, author = {Wischnewski, Juliane and Herzschuh, Ulrike and Ruehland, Kathleen M. and Braeuning, Achim and Mischke, Steffen and Smol, John P. and Wang, Lily}, title = {Recent ecological responses to climate variability and human impacts in the Nianbaoyeze Mountains (eastern Tibetan Plateau) inferred from pollen, diatom and tree-ring data}, series = {Journal of paleolimnolog}, volume = {51}, journal = {Journal of paleolimnolog}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-013-9747-1}, pages = {287 -- 302}, year = {2014}, abstract = {The Tibetan Plateau is a region that is highly sensitive to recent global warming, but the complexity and heterogeneity of its mountainous landscape can result in variable responses. In addition, the scarcity and brevity of regional instrumental and palaeoecological records still hamper our understanding of past and present patterns of environmental change. To investigate how the remote, high-alpine environments of the Nianbaoyeze Mountains, eastern Tibetan Plateau, are affected by climate change and human activity over the last similar to 600 years, we compared regional tree-ring studies with pollen and diatom remains archived in the dated sediments of Dongerwuka Lake (33.22A degrees N, 101.12A degrees E, 4,307 m a.s.l.). In agreement with previous studies from the eastern Tibetan Plateau, a strong coherence between our two juniper-based tree-ring chronologies from the Nianbaoyeze and the Anemaqin Mountains was observed, with pronounced cyclical variations in summer temperature reconstructions. A positive directional trend to warmer summer temperatures in the most recent decades, was, however, not observed in the tree-ring record. Likewise, our pollen and diatom spectra showed minimal change over the investigated time period. Although modest, the most notable change in the diatom relative abundances was a subtle decrease in the dominant planktonic Cyclotella ocellata and a concurrent increase in small, benthic fragilarioid taxa in the similar to 1820s, suggesting higher ecosystem variability. The pollen record subtly indicates three periods of increased cattle grazing activity (similar to 1400-1480 AD, similar to 1630-1760 AD, after 1850 AD), but shows generally no significant vegetation changes during past similar to 600 years. The minimal changes observed in the tree-ring, diatom and pollen records are consistent with the presence of localised cooling centres that are evident in instrumental and tree-ring data within the southeastern and eastern Tibetan Plateau. Given the minor changes in regional temperature records, our complacent palaeoecological profiles suggest that climatically induced ecological thresholds have not yet been crossed in the Nianbaoyeze Mountains region.}, language = {en} } @article{ScheinerKulikovskajaThamm2014, author = {Scheiner, Ricarda and Kulikovskaja, Leonora and Thamm, Markus}, title = {The honey bee tyramine receptor AmTYR1 and division of foraging labour}, series = {The journal of experimental biology}, volume = {217}, journal = {The journal of experimental biology}, number = {8}, publisher = {Company of Biologists Limited}, address = {Cambridge}, issn = {0022-0949}, doi = {10.1242/jeb.098475}, pages = {1215 -- 1217}, year = {2014}, abstract = {Honey bees display a fascinating division of labour among foragers. While some bees solely collect pollen, others only collect nectar. It is assumed that individual differences in sensory response thresholds are at the basis of this division of labour. Biogenic amines and their receptors are important candidates for regulating the division of labour, because they can modulate sensory response thresholds. Here, we investigated the role of the honey bee tyramine receptor AmTYR1 in regulating the division of foraging labour. We report differential splicing of the Amtyr1 gene and show differential gene expression of one isoform in the suboesophageal ganglion of pollen and nectar foragers. This ganglion mediates gustatory inputs. These findings imply a role for the honey bee tyramine receptor in regulating the division of foraging labour, possibly through the suboesophageal ganglion.}, language = {en} } @article{MarquerGaillardSugitaetal.2014, author = {Marquer, Laurent and Gaillard, Marie-Jose and Sugita, Shinya and Trondman, Anna-Kari and Mazier, Florence and Nielsen, Anne Birgitte and Fyfe, Ralph M. and Odgaard, Bent Vad and Alenius, Teija and Birks, H. John B. and Bjune, Anne E. and Christiansen, J{\"o}rg and Dodson, John and Edwards, Kevin J. and Giesecke, Thomas and Herzschuh, Ulrike and Kangur, Mihkel and Lorenz, Sebastian and Poska, Anneli and Schult, Manuela and Seppa, Heikki}, title = {Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {90}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2014.02.013}, pages = {199 -- 216}, year = {2014}, abstract = {We present pollen-based reconstructions of the spatio-temporal dynamics of northern European regional vegetation abundance through the Holocene. We apply the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model using fossil pollen records from eighteen sites within five modern biomes in the region. The eighteen sites are classified into four time-trajectory types on the basis of principal components analysis of both the REVEALS-based vegetation estimates (RVs) and the pollen percentage (PPs). The four trajectory types are more clearly separated for RVs than PPs. Further, the timing of major Holocene shifts, rates of compositional change, and diversity indices (turnover and evenness) differ between RVs and PPs. The differences are due to the reduction by REVEALS of biases in fossil pollen assemblages caused by different basin size, and inter-taxonomic differences in pollen productivity and dispersal properties. For example, in comparison to the PPs, the RVs show an earlier increase in Corylus and Ulmus in the early-Holocene and a more pronounced increase in grassland and deforested areas since the mid-Holocene. The results suggest that the influence of deforestation and agricultural activities on plant composition and abundance from Neolithic times was stronger than previously inferred from PPs. Relative to PPs, RVs show a more rapid compositional change, a largest decrease in turnover, and less variable evenness in most of northern Europe since 5200 cal yr BP. All these changes are primarily related to the strong impact of human activities on the vegetation. This study demonstrates that RV-based estimates of diversity indices, timing of shifts, and rates of change in reconstructed vegetation provide new insights into the timing and magnitude of major human distribution on Holocene regional, vegetation, feature that are critical in the assessment of human impact on vegetation, land-cover, biodiversity, and climate in the past.}, language = {en} } @article{HoffBiskabornDirksenetal.2015, author = {Hoff, Ulrike and Biskaborn, Boris and Dirksen, Veronika G. and Dirksen, Oleg and Kuhn, Gerhard and Meyer, Hanno and Nazarova, Larisa B. and Roth, Alexandra and Diekmann, Bernhard}, title = {Holocene environment of Central Kamchatka, Russia: Implications from a multi-proxy record of Two-Yurts Lake}, series = {Global and planetary change}, volume = {134}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2015.07.011}, pages = {101 -- 117}, year = {2015}, abstract = {Within the scope of Russian German palaeoenvironmental research, Two-Yurts Lake (TYL, Dvuh-Yurtochnoe in Russian) was chosen as the main scientific target area to decipher Holocene climate variability on Kamchatka. The 5 x 2 km large and 26 m deep lake is of proglacial origin and situated on the eastern flank of Sredinny Ridge at the northwestern end of the Central Kamchatka Valley, outside the direct influence of active volcanism. Here, we present results of a multi-proxy study on sediment cores, spanning about the last 7000 years. The general tenor of the TYL record is an increase in continentality and winter snow cover in conjunction with a decrease in temperature, humidity, and biological productivity after 5000-4500 cal yrs BP, inferred from pollen and diatom data and the isotopic composition of organic carbon. The TYL proxy data also show that the late Holocene was punctuated by two colder spells, roughly between 4500 and 3500 cal yrs BP and between 1000 and 200 cal yrs BP, as local expressions of the Neoglacial and Little Ice Age, respectively. These environmental changes can be regarded as direct and indirect responses to climate change, as also demonstrated by other records in the regional terrestrial and marine realm. Long-term climate deterioration was driven by decreasing insolation, while the short-term climate excursions are best explained by local climatic processes. The latter affect the configuration of atmospheric pressure systems that control the sources as well as the temperature and moisture of air masses reaching Kamchatka. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{RudayaNazarovaNovenkoetal.2016, author = {Rudaya, Natalia and Nazarova, Larisa B. and Novenko, Elena and Andreev, Andrei and Kalugin, Ivan and Daryin, Andrei and Babich, Valery and Li, Hong-Chun and Shilov, Pavel}, title = {Quantitative reconstructions of mid- to late holocene climate and vegetation in the north-eastern altai mountains recorded in lake teletskoye}, series = {Global and planetary change}, volume = {141}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2016.04.002}, pages = {12 -- 24}, year = {2016}, abstract = {We report the first high-resolution (20-50 years) mid- to late Holocene pollen records from Lake Teletskoye, the largest lake in the Altai Mountains, in south-eastern West Siberia. Generally, the mid- to late Holocene (the last 4250 years) vegetation of the north-eastern Altai, as recorded in two studied sediment cores, is characterised by Siberian pine-spruce-fir forests that are similar to those of the present day. A relatively cool and dry interval with July temperatures lower than those of today occurred between 3.9 and 3.6 ka BP. The widespread distribution of open, steppe-like communities with Artemisia, Chenopodiaceae and Cyperaceae reflects maximum deforestation during this interval. After ca. 3.5 ka BP, the coniferous mountain taiga spread significantly, with maximum woody coverage and taiga biome scores between ca. 2.7 and 1.6 ka BP. This coincides well with the highest July temperature (approximately 1 degrees C higher than today) intervals. A short period of cooling about 13-1.4 ka BP could have been triggered by the increased volcanic activity recorded across the Northern Hemisphere. A new period of cooling started around 1100-1150 CE, with the minimum July temperatures occurring between 1450 and 1800 CE. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} }