@article{EinarssonBahrkeSigurdssonetal.2013, author = {Einarsson, Jon M. and Bahrke, Sven and Sigurdsson, Bjarni Thor and Ng, Chuen-How and Petersen, Petur Henry and Sigurjonsson, Olafur E. and Jonsson, Halldor and Gislason, Johannes and Thormodsson, Finnbogi R. and Peter, Martin G.}, title = {Partially acetylated chitooligosaccharides bind to YKL-40 and stimulate growth of human osteoarthritic chondrocytes}, series = {Biochemical and biophysical research communications}, volume = {434}, journal = {Biochemical and biophysical research communications}, number = {2}, publisher = {Elsevier}, address = {San Diego}, issn = {0006-291X}, doi = {10.1016/j.bbrc.2013.02.122}, pages = {298 -- 304}, year = {2013}, abstract = {Recent evidences indicating that cellular kinase signaling cascades are triggered by oligomers of N-acetylglucosamine (ChOS) and that condrocytes of human osteoarthritic cartilage secrete the inflammation associated chitolectin YKL-40, prompted us to study the binding affinity of partially acetylated ChOS to YKL-40 and their effect on primary chondrocytes in culture. Extensive chitinase digestion and filtration of partially deacetylated chitin yielded a mixture of ChOS (Oligomin(TM)) and further ultrafiltration produced T-ChOS(TM), with substantially smaller fraction of the smallest sugars. YKL-40 binding affinity was determined for the different sized homologues, revealing micromolar affinities of the larger homologues to YKL-40. The response of osteoarthritic chondrocytes to Oligomin(TM) and T-ChOS(TM) was determined, revealing 2- to 3-fold increases in cell number. About 500 mu g/ml was needed for Oligomin(TM) and around five times lower concentration for T-ChOS(TM), higher concentrations abolished this effect for both products. Addition of chitotriose inhibited cellular responses mediated by larger oligosaccharides. These results, and the fact that the partially acetylated T-ChOS(TM) homologues should resist hydrolysis, point towards a new therapeutic concept for treating inflammatory joint diseases.}, language = {en} } @phdthesis{Bahrke2008, author = {Bahrke, Sven}, title = {Mass spectrometric analysis of chitooligosaccharides and their interaction with proteins}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-20179}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Chitooligosaccharides are composed of glycosamin and N-acetylglycisamin residues. Gel permeations chromatography is employed for the separation of oligomers, cation exchange chromatography is used for the separation of homologes and isomers. Trideuterioacetylation of the chitooligosaccharides followed by MALDI-TOF mass spectrometry allowes for the quantitation of mixtures of homologes. vMALDI LTQ multiple-stage MS is employed for quantitative sequencing of complex mixtures of heterochitooligosaccharides. Pure homologes and isomers are applied to biological assays. Chitooligosaccahrides form high-affinity non-covalent complexes with HC gp-39 (human cartilage glycoprotein of 39 kDa). The affinity of the chitooligosaccharides depends on DP, FA and the sequence of glycosamin and N-acetylglycosamin moieties. (+)nanoESI Q TOF MS/MS is used for identification of a high-affinity binding chitooligosaccharide of a non-covalent chitinase B - chitooligosaccharide complex. DADAA is identified as the heterochitoisomer binding with highest affinity and biostability to HC gp-39. Fluorescence based enzyme assays confirm the results.}, language = {en} }