@article{BaroniOrtuaniFacchietal.2013, author = {Baroni, Gabriele and Ortuani, B. and Facchi, A. and Gandolfi, C.}, title = {The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field}, series = {Journal of hydrology}, volume = {489}, journal = {Journal of hydrology}, number = {7}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2013.03.007}, pages = {148 -- 159}, year = {2013}, abstract = {Soil moisture dynamics are affected by complex interactions among several factors. Understanding the relative importance of these factors is still an important challenge in the study of water fluxes and solute transport in unsaturated media. In this study, the spatio-temporal variability of surface soil moisture was investigated in a 10 ha flat cropped field located in northern Italy. Soil moisture was measured on a regular 50 x 50 m grid on seven dates during the growing season. For each measurement campaign, the spatial variability of the soil moisture was compared with the spatial variability of the soil texture and crop properties. In particular, to better understand the role of the vegetation, the spatio-temporal variability of two different parameters - leaf area index and crop height - was monitored on eight dates at different crop development stages. Statistical and geostatistical analysis was then applied to explore the interactions between these variables. In agreement with other studies, the results show that the soil moisture variability changes according to the average value within the field, with the standard deviation reaching a maximum value under intermediate mean soil moisture conditions and the coefficient of variation decreasing exponentially with increasing mean soil moisture. The controls of soil moisture variability change according to the average soil moisture within the field. Under wet conditions, the spatial distribution of the soil moisture reflects the variability of the soil texture. Under dry conditions, the spatial distribution of the soil moisture is affected mostly by the spatial variability of the vegetation. The interaction between these two factors is more important under intermediate soil moisture conditions. These results confirm the importance of considering the average soil moisture conditions within a field when investigating the controls affecting the spatial variability of soil moisture. This study highlights the importance of considering the spatio-temporal variability of the vegetation in investigating soil moisture dynamics, especially under intermediate and dry soil moisture conditions. The results of this study have important implications in different hydrological applications, such as for sampling design, ranking stability application, indirect measurements of soil properties and model parameterisation.}, language = {en} } @article{BaroniOswald2015, author = {Baroni, Gabriele and Oswald, Sascha Eric}, title = {A scaling approach for the assessment of biomass changes and rainfall interception using cosmic-ray neutron sensing}, series = {Journal of hydrology}, volume = {525}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2015.03.053}, pages = {264 -- 276}, year = {2015}, abstract = {Cosmic-Ray neutron sensing (CRS) is a unique approach to measure soil moisture at field scale filling the gap of current methodologies. However, CRS signal is affected by all the hydrogen pools on the land surface and understanding their relative importance plays an important role for the application of the method e.g., validation of remote sensing products and data assimilation. In this study, a soil moisture scaling approach is proposed to estimate directly the correct CRS soil moisture based on the soil moisture profile measured at least in one position within the field. The approach has the advantage to avoid the need to introduce one correction for each hydrogen contribution and to estimate indirectly all the related time-varying hydrogen pools. Based on the data collected in three crop seasons, the scaling approach shows its ability to identify and to quantify the seasonal biomass water equivalent. Additionally, the analysis conducted at sub-daily time resolution is able to quantify the daily vertical redistribution of the water biomass and the rainfall interception, showing promising applications of the CRS method also for these types of measurements. Overall, the study underlines how not only soil moisture but all the specific hydrological processes in the soil-plant-atmosphere continuum should be considered for a proper evaluation of the CRS signal. For this scope, the scaling approach reveals to be a simple and pragmatic analysis that can be easily extended to other experimental sites. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} }