@phdthesis{Naseri2018, author = {Naseri, Gita}, title = {Plant-derived transcription factors and their application for synthetic biology approaches in Saccharomyces cerevisiae}, doi = {10.25932/publishup-42151}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421514}, school = {Universit{\"a}t Potsdam}, pages = {187}, year = {2018}, abstract = {Bereits seit 9000 Jahren verwendet die Menschheit die B{\"a}ckerhefe Saccharomyces cerevisiae f{\"u}r das Brauen von Bier, aber erst seit 150 Jahren wissen wir, dass es sich bei diesem unerm{\"u}dlichen Helfer im Brauprozess um einzellige, lebende Organismen handelt. Und die B{\"a}ckerhefe kann noch viel mehr. Im Rahmen des Forschungsgebietes der Synthetischen Biologie soll unter anderem die B{\"a}ckerhefe als innovatives Werkzeug f{\"u}r die biobasierte Herstellung verschiedenster Substanzen etabliert werden. Zu diesen Substanzen z{\"a}hlen unter anderem Feinchemikalien, Biokraftstoffe und Biopolymere sowie pharmakologisch und medizinisch interessante Pflanzenstoffe. Damit diese verschiedensten Substanzen in der B{\"a}ckerhefe hergestellt werden k{\"o}nnen, m{\"u}ssen große Mengen an Produktionsinformationen zum Beispiel aus Pflanzen in die Hefezellen {\"u}bertragen werden. Dar{\"u}ber hinaus m{\"u}ssen die neu eingebrachten Biosynthesewege reguliert und kontrolliert in den Zellen ablaufen. Auch Optimierungsprozesse zur Erh{\"o}hung der Produktivit{\"a}t sind notwendig. F{\"u}r alle diese Arbeitsschritte mangelt es bis heute an anwendungsbereiten Technologien und umfassenden Plattformen. Daher wurden im Rahmen dieser Doktorarbeit verschiedene Technologien und Plattformen zur Informations{\"u}bertragung, Regulation und Prozessoptimierung geplant und erzeugt. F{\"u}r die Konstruktion von Biosynthesewegen in der B{\"a}ckerhefe wurde als erstes eine Plattform aus neuartigen Regulatoren und Kontrollelementen auf der Basis pflanzlicher Kontrollelemente generiert und charakterisiert. Im zweiten Schritt erfolgte die Entwicklung einer Technologie zur kombinatorischen Verwendung der Regulatoren in der Planung und Optimierung von Biosynthesewegen (COMPASS). Abschließend wurde eine Technologie f{\"u}r die Prozessoptimierung der ver{\"a}nderten Hefezellen entwickelt (CapRedit). Die Leistungsf{\"a}higkeit der entwickelten Plattformen und Technologien wurde durch eine Optimierung der Produktion von Carotenoiden (Beta-Carotin und Beta-Ionon) und Flavonoiden (Naringenin) in Hefezellen nachgewiesen. Die im Rahmen der Arbeit etablierten neuartigen Plattformen und innovativen Technologien sind ein wertvoller Grundbaustein f{\"u}r die Erweiterung der Nutzbarkeit der B{\"a}ckerhefe. Sie erm{\"o}glichen den Einsatz der Hefezellen in kosteneffizienten Produktionswegen und alternativen chemischen Wertsch{\"o}pfungsketten. Dadurch k{\"o}nnen zum Beispiel Biokraftstoffe und pharmakologisch interessante Pflanzenstoffe unter Verwendung von nachwachsenden Rohstoffen, Reststoffen und Nebenprodukten hergestellt werden. Dar{\"u}ber hinaus ergeben sich Anwendungsm{\"o}glichkeiten zur Bodensanierung und Wasseraufbereitung.}, language = {en} } @phdthesis{Streffer2002, author = {Streffer, Katrin}, title = {Highly sensitive measurements of substrates and inhibitors on the basis of tyrosinase sensors and recycling systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000632}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Analytische Chemie heute meint nicht l{\"a}nger nur die große Messtechnik, die zeit- und kostenintensiv ist, die außerdem nur von qualifiziertem Personal zu bedienen ist und deren Resultate nur durch dieses Personal auswertbar sind. Meist erfordert diese sagen wir 'klassische analytische Messtechnik' auch noch spezielle R{\"a}umlichkeiten und oft eine relative große Menge an speziell vorbereiteten Proben. Neben dieser klassischen analytischen Messtechnik hat sich besonders in den letzten Jahren eine auf bestimmte Stoffgruppen und Anforderungen zugeschnittene Messtechnik durchgesetzt, die oft auch durch einen Laien bedient werden kann. Meist sind es sehr kleine Ger{\"a}te. Auch die ben{\"o}tigten Probenvolumina sind klein und eine spezielle Probenvorbereitung ist nicht erforderlich. Ausserdem sind die Ger{\"a}te einfach zu handhaben, billig sowohl in ihrer Herstellung als auch im Gebrauch und meist erlauben sie sogar eine kontinuierliche Messwerterfassung. Zahlreiche dieser in den letzten Jahren entwickelten Ger{\"a}te greifen zur{\"u}ck auf 40 Jahre Forschung auf dem Gebiet der Biosensorik. Seit Clark und Lyons im Jahr 1962 in der Lage waren, mit einer einfachen Sauerstoffelektrode, erg{\"a}nzt durch ein Enzym, Glucose zu messen, war die Entwicklung neuer Messtechnik nicht mehr aufzuhalten. Biosensoren, spezielle Messf{\"u}hler, die aus einer Kombination aus biologischer Komponente (erlaubt eine spezifische Erkennung des Analyten auch ohne vorherige Reinigung der Probe) und einem physikalischen Messf{\"u}hler (wandelt den prim{\"a}ren physikochemischen Effekt in ein elektronisch messbares Signal um) bestehen, eroberten den Markt. Im Rahmen dieser Doktorarbeit wurden verschiedene Tyrosinasesensoren entwickelt, die je nach Herkunft und Eigenschaften der verwendeten Tyrosinase unterschiedliche Anforderungen erf{\"u}llen. Beispielsweise wurde einer dieser Tyrosinasesensoren f{\"u}r die Bestimmung phenolischer Verbindungen in Fluss- und Seewasserproben eingesetzt, und die mit diesem Sensor gemessenen Ergebnisse konnten sehr gut mit dem entsprechenden DIN-Test zur Bestimmung phenolischer Verbindungen korreliert werden. Ein anderer entwickelter Sensor zeigte eine sehr hohe Empfindlichkeit f{\"u}r Catecholamine, Substanzen die speziell in der medizinischen Diagnostik von Wichtigkeit sind. Ausserdem zeigten die ebenfalls im Rahmen dieser Doktorarbeit durchgef{\"u}hrten Untersuchungen zweier verschiedener Tyrosinasen, dass, will man in Zukunft noch empfindlichere Tyrosinasesensoren entwickeln, eine spezielle Tyrosinase (Tyrosinase aus Streptomyces antibioticus) die bessere Wahl sein wird, als die bisher im Bereich der Biosensorforschung verwendete Tyrosinase aus Agaricus bisporus. Desweiteren wurden erste Erfolge auf molekularbiologischem Gebiet erreicht, das heisst, dass Tyrosinasemutanten mit speziellen, vorher {\"u}berlegten Eigenschaften, hergestellt werden sollen. Diese Erfolge k{\"o}nnen dazu genutzt werden, eine neue Generation an Tyrosinasesensoren zu entwickeln, Tyrosinasesensoren in denen Tyrosinase gerichtet gebunden werden kann, sowohl an den entsprechenden physikalischen Messf{\"u}hler oder auch an ein anderes Enzym. Davon verspricht man sich deutlich minimierte Wege, die die zu bestimmende Substanz (oder deren Produkt) sonst zur{\"u}cklegen m{\"u}sste, was am Ende zu einer deutlich erh{\"o}hten Empfindlichkeit des resultierenden Biosensors f{\"u}hren sollte.}, subject = {Enzymelektrode ; Monophenolmonooxygenase}, language = {en} } @phdthesis{Wegerich2010, author = {Wegerich, Franziska}, title = {Engineered human cytochrome c : investigation of superoxide and protein-protein interaction and application in bioelectronic systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50782}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {The aim of this thesis is the design, expression and purification of human cytochrome c mutants and their characterization with regard to electrochemical and structural properties as well as with respect to the reaction with the superoxide radical and the selected proteins sulfite oxidase from human and fungi bilirubin oxidase. All three interaction partners are studied here for the first time with human cyt c and with mutant forms of cyt c. A further aim is the incorporation of the different cyt c forms in two bioelectronic systems: an electrochemical superoxide biosensor with an enhanced sensitivity and a protein multilayer assembly with and without bilirubin oxidase on electrodes. The first part of the thesis is dedicated to the design, expression and characterization of the mutants. A focus is here the electrochemical characterization of the protein in solution and immobilized on electrodes. Further the reaction of these mutants with superoxide was investigated and the possible reaction mechanisms are discussed. In the second part of the work an amperometric superoxide biosensor with selected human cytochrome c mutants was constructed and the performance of the sensor electrodes was studied. The human wild-type and four of the five mutant electrodes could be applied successfully for the detection of the superoxide radical. In the third part of the thesis the reaction of horse heart cyt c, the human wild-type and seven human cyt c mutants with the two proteins sulfite oxidase and bilirubin oxidase was studied electrochemically and the influence of the mutations on the electron transfer reactions was discussed. Finally protein multilayer electrodes with different cyt form including the mutant forms G77K and N70K which exhibit different reaction rates towards BOD were investigated and BOD together with the wild-type and engineered cyt c was embedded in the multilayer assembly. The relevant electron transfer steps and the kinetic behavior of the multilayer electrodes are investigated since the functionality of electroactive multilayer assemblies with incorporated redox proteins is often limited by the electron transfer abilities of the proteins within the multilayer. The formation via the layer-by-layer technique and the kinetic behavior of the mono and bi-protein multilayer system are studied by SPR and cyclic voltammetry. In conclusion this thesis shows that protein engineering is a helpful instrument to study protein reactions as well as electron transfer mechanisms of complex bioelectronic systems (such as bi-protein multilayers). Furthermore, the possibility to design tailored recognition elements for the construction of biosensors with an improved performance is demonstrated.}, language = {en} } @phdthesis{Rajkumar2007, author = {Rajkumar, Rajagopal}, title = {Development of a thermometric sensor for fructosyl valine and fructose using molecularly imprinted polymers as a recognition element}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17272}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Nature has always served as a model for mimicking and inspiration to humans in their efforts to improve their life. Researchers have been inspired by nature to produce biomimetic materials with molecular recognition properties by design rather than evolution. Molecular imprinting is one way to prepare such materials. Such smart materials with new functionalities are at the forefront of the development of a relevant number of ongoing and perspective applications ranging from consumer to space industry. Molecularly imprinted polymers were developed by mimicking the natural enzymes or antibodies that serve as host for binding target molecules. These imprints were used as a recognition element to substitute natural biomolecules in biosensors. The concept behind molecular imprinting is to mold a material (with the desired chemical properties) around individual molecules. Upon removal of the molecular templates, one is left with regions in the molded material that fit the shape of the template molecules. Thus, molecular imprinting results in materials that can selectively bind to molecules of interest. Imprinted materials resulted in applications ranging from chemical separation to bioanalytics. In this work attempts were made particularly in the development of molecularly imprinted polymer based thermometric sensors. The main effort was focused towards the development of an covalently imprinted polymer that would be able to selectively bind fructosyl valine (Fru-Val), the N-terminal constituent of hemoglobin A1c ß-chains. Taking into account the known advantages of imprinted polymers, e.g. robustness, thermal and chemical stability, imprinted materials were successfully used as a recognition element in the sensor. One of the serious problems associated with the development of MIP sensors and which lies in the absence of a generic procedure for the transformation of the polymer-template binding event into a detectable signal has been addressed by developing the "thermometric" approach. In general the developed approach gives a new insight on MIP/Analyte interactions.}, language = {en} } @phdthesis{Wettstein2015, author = {Wettstein, Christoph}, title = {Cytochrome c-DNA and cytochrome c-enzyme interactions for the construction of analytical signal chains}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78367}, school = {Universit{\"a}t Potsdam}, pages = {120}, year = {2015}, abstract = {Electron transfer (ET) reactions play a crucial role in the metabolic pathways of all organisms. In biotechnological approaches, the redox properties of the protein cytochrome c (cyt c), which acts as an electron shuttle in the respiratory chain, was utilized to engineer ET chains on electrode surfaces. With the help of the biopolymer DNA, the redox protein assembles into electro active multilayer (ML) systems, providing a biocompatible matrix for the entrapment of proteins. In this study the characteristics of the cyt c and DNA interaction were defined on the molecular level for the first time and the binding sites of DNA on cyt c were identified. Persistent cyt c/DNA complexes were formed in solution under the assembly conditions of ML architectures, i.e. pH 5.0 and low ionic strength. At pH 7.0, no agglomerates were formed, permitting the characterization of the NMR spectroscopy. Using transverse relaxation-optimized spectroscopy (TROSY)-heteronuclear single quantum coherence (HSQC) experiments, DNAs' binding sites on the protein were identified. In particular, negatively charged AA residues, which are known interaction sites in cyt c/protein binding were identified as the main contact points of cyt c and DNA. Moreover, the sophisticated task of arranging proteins on electrode surfaces to create functional ET chains was addressed. Therefore, two different enzyme types, the flavin dependent fructose dehydrogenase (FDH) and the pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH), were tested as reaction partners of freely diffusing cyt c and cyt c immobilized on electrodes in mono- and MLs. The characterisation of the ET processes was performed by means of electrochemistry and the protein deposition was monitored by microgravimetric measurements. FDH and PQQ-GDH were found to be generally suitable for combination with the cyt c/DNA ML system, since both enzymes interact with cyt c in solution and in the immobilized state. The immobilization of FDH and cyt c was achieved with the enzyme on top of a cyt c monolayer electrode without the help of a polyelectrolyte. Combining FDH with the cyt c/DNA ML system did not succeed, yet. However, the basic conditions for this protein-protein interaction were defined. PQQ-GDH was successfully coupled with the ML system, demonstrating that that the cyt c/DNA ML system provides a suitable interface for enzymes and that the creation of signal chains, based on the idea of co-immobilized proteins is feasible. Future work may be directed to the investigation of cyt c/DNA interaction under the precise conditions of ML assembly. Therefore, solid state NMR or X-ray crystallography may be required. Based on the results of this study, the combination of FDH with the ML system should be addressed. Moreover, alternative types of enzymes may be tested as catalytic component of the ML assembly, aiming on the development of innovative biosensor applications.}, language = {en} } @phdthesis{Frasca2012, author = {Frasca, Stefano}, title = {Biocatalysis on nanostructured surfaces : investigation and application of redox proteins using spectro-electrochemical methods}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-58131}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {In this thesis, different aspects within the research field of protein spectro- and electro-chemistry on nanostructured materials are addressed. On the one hand, this work is related to the investigation of nanostructured transparent and conductive metal oxides as platform for the immobilization of electroactive enzymes. On the other hand the second part of this work is related to the immobilization of sulfite oxidase on gold nanoparticles modified electrode. Finally direct and mediated spectroelectrochemistry protein with high structure complexity such as the xanthine dehydrogenase from Rhodobacter capsulatus and its high homologues the mouse aldehyde oxidase homolog 1. Stable immobilization and reversible electrochemistry of cytochrome c in a transparent and conductive tin-doped and tin-rich indium oxide film with a well-defined mesoporosity is reported. The transparency and good conductivity, in combination with the large surface area of these materials, allow the incorporation of a high amount of electroactive biomolecules (between 250 and 2500 pmol cm-2) and their electrochemical and spectroscopic investigation. Both, the electrochemical behavior and the immobilization of proteins are influenced by the geometric parameters of the porous material, such as the structure and pore shape, the surface chemistry, as well as the protein size and charge. UV-Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry, are employed for the characterization of cytochrome c immobilized in the mesoporous indium tin oxide and reveal no perturbation of the structural integrity of the redox protein. A long term protein immobilization is reached using these unmodified mesoporous indium oxide based materials, i.e. more than two weeks even at high ionic strength. The potential of this modified material as an amperometric biosensor for the detection of superoxide anions is demonstrated. A sensitivity of about 100 A M-1 m-2, in a linear measuring range of the superoxide concentration between 0.13 and 0.67 μM, is estimated. In addition an electrochemical switchable protein-based optical device is designed with the core part composed of cytochrome c immobilized on a mesoporous indium tin oxide film. A color developing redox sensitive dye is used as switchable component of the system. The cytochrome c-catalyzed oxidation of the dye by hydrogen peroxide is spectroscopically investigated. When the dye is co-immobilized with the protein, its redox state is easily controlled by application of an electrical potential at the supporting material. This enables to electrochemical reset the system to the initial state and repetitive signal generation. The case of negative charged proteins, which does not have a good interaction with the negative charged indium oxide based films, is also explored. The modification of an indium tin oxide film with a positive charged polymer and the employment of a antimony doped tin oxide film were investigated in this work in order to overcome the repulsion induced by similar charges of the protein and electrode. Human sulfite oxidase and its separated heme-containing domain are able to direct exchange electrons with the supporting material. A study of a new approach for sulfite biosensing, based on enhanced direct electron transfer of a human sulfite oxidase immobilized on a gold nanoparticles modified electrode is reported. The spherical gold nanoparticles were prepared via a novel method by reduction of HAuCl4 with branched poly(ethyleneimine) in an ionic liquid resulting in particles of about 10 nm in hydrodynamic diameter. These nanoparticles were covalently attached to a mercaptoundecanoic acid modified Au-electrode and act as platform where human sulfite oxidase is adsorbed. An enhanced interfacial electron transfer and electrocatalysis is therefore achieved. UV-Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry, were employed for the characterization of the system and reveal no perturbation of the structural integrity of the redox protein. The proposed biosensor exhibited a quick steady-state current response, within 2 s and a linear detection range between 0.5 and 5.4 μM with high sensitivity (1.85 nA μM-1). The investigated system provides remarkable advantages, since it works at low applied potential and at very high ionic strength. Therefore these properties could make the proposed system useful in the development of bioelectronic devices and its application in real samples. Finally protein with high structure complexity such as the xanthine dehydrogenase from Rhodobacter capsulatus and the mouse aldehyde oxidase homolog 1 were spectroelectrochemically studied. It could be demonstrated that different cofactors present in the protein structure, like the FAD and the molybdenum cofactor, are able to directly exchange electrons with an electrode and are displayed as a single peak in a square wave voltammogram. Protein mutants bearing a serine substituted to the cysteines, bounding to the most exposed iron sulfur cluster additionally showed direct electron transfer which can be attributable to this cluster. On the other hand a mediated spectroelectrochemical titration of the protein bound FAD cofactor was performed in presence of transparent iron and cobalt complex mediators. The results showed the formation of the stable semiquinone and the fully reduced flavin. Two formal potentials for each single electron exchange step were then determined.}, language = {en} }