@article{JetzschmannJagerszkiDechtriratetal.2015, author = {Jetzschmann, Katharina J. and Jagerszki, Gyula and Dechtrirat, Decha and Yarman, Aysu and Gajovic-Eichelmann, Nenad and Gilsing, Hans-Detlev and Schulz, Burkhard and Gyurcsanyi, Robert E. and Scheller, Frieder W.}, title = {Vectorially Imprinted Hybrid Nanofilm for Acetylcholinesterase Recognition}, series = {Advanced functional materials}, volume = {25}, journal = {Advanced functional materials}, number = {32}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201501900}, pages = {5178 -- 5183}, year = {2015}, abstract = {Effective recognition of enzymatically active tetrameric acetylcholinesterase (AChE) is accomplished by a hybrid nanofilm composed of a propidium-terminated self-assembled monolayer (Prop-SAM) which binds AChE via its peripheral anionic site (PAS) and an ultrathin electrosynthesized molecularly imprinted polymer (MIP) cover layer of a novel carboxylate-modified derivative of 3,4-propylenedioxythiophene. The rebinding of the AChE to the MIP/Prop-SAM nanofilm covered electrode is detected by measuring in situ the enzymatic activity. The oxidative current of the released thiocholine is dependent on the AChE concentration from approximate to 0.04 x 10(-6) to 0.4 x 10(-6)m. An imprinting factor of 9.9 is obtained for the hybrid MIP, which is among the best values reported for protein imprinting. The dissociation constant characterizing the strength of the MIP-AChE binding is 4.2 x 10(-7)m indicating the dominant role of the PAS-Prop-SAM interaction, while the benefit of the MIP nanofilm covering the Prop-SAM layer is the effective suppression of the cross-reactivity toward competing proteins as compared with the Prop-SAM. The threefold selectivity gain provided by i) the shape-specific MIP filter, ii) the propidium-SAM, iii) signal generation only by the AChE bound to the nanofilm shows promise for assessing AChE activity levels in cerebrospinal fluid.}, language = {en} } @article{YarmanSchulzSygmundetal.2014, author = {Yarman, Aysu and Schulz, Christopher and Sygmund, Cristoph and Ludwig, Roland and Gorton, Lo and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Third generation ATP sensor with enzymatic analyte recycling}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {26}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1040-0397}, doi = {10.1002/elan.201400231}, pages = {2043 -- 2048}, year = {2014}, abstract = {For the first time the direct electron transfer of an enzyme - cellobiose dehydrogenase, CDH - has been coupled with the hexokinase catalyzed competition for glucose in a sensor for ATP. To enhance the signal output for ATP, pyruvate kinase was coimmobilized to recycle ADP by the phosphoenolpyruvate driven reaction. The new sensor overcomes the limit of 1:1 stoichiometry of the sequential or competitive conversion of ATP by effective enzymatic recycling of the analyte. The anodic oxidation of the glucose converting CDH proceeds at electrode potentials below 0 mV vs. Ag vertical bar AgCl thus potentially interfering substances like ascorbic acid or catecholamines do not influence the measuring signal. The combination of direct electron transfer of CDH with the enzymatic recycling results in an interference-free and oxygen-independent measurement of ATP in the lower mu molar concentration range with a lower limit of detection of 63.3 nM (S/N=3).}, language = {en} } @article{YarmanScheller2014, author = {Yarman, Aysu and Scheller, Frieder W.}, title = {The first electrochemical MIP sensor for tamoxifen}, series = {Sensors}, volume = {14}, journal = {Sensors}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s140507647}, pages = {7647 -- 7654}, year = {2014}, abstract = {We present an electrochemical MIP sensor for tamoxifen (TAM)-a nonsteroidal anti-estrogen-which is based on the electropolymerisation of an O-phenylenediamine. resorcinol mixture directly on the electrode surface in the presence of the template molecule. Up to now only. bulk. MIPs for TAM have been described in literature, which are applied for separation in chromatography columns. Electro-polymerisation of the monomers in the presence of TAM generated a film which completely suppressed the reduction of ferricyanide. Removal of the template gave a markedly increased ferricyanide signal, which was again suppressed after rebinding as expected for filling of the cavities by target binding. The decrease of the ferricyanide peak of the MIP electrode depended linearly on the TAM concentration between 1 and 100 nM. The TAM-imprinted electrode showed a 2.3 times higher recognition of the template molecule itself as compared to its metabolite 4-hydroxytamoxifen and no cross-reactivity with the anticancer drug doxorubucin was found. Measurements at + 1.1 V caused a fouling of the electrode surface, whilst pretreatment of TAM with peroxide in presence of HRP generated an oxidation product which was reducible at 0 mV, thus circumventing the polymer formation and electrochemical interferences.}, language = {en} } @article{YarmanGroebeNeumannetal.2012, author = {Yarman, Aysu and Gr{\"o}be, Glenn and Neumann, Bettina and Kinne, Mathias and Gajovic-Eichelmann, Nenad and Wollenberger, Ursula and Hofrichter, Martin and Ullrich, Rene and Scheibner, Katrin and Scheller, Frieder W.}, title = {The aromatic peroxygenase from Marasmius rutola-a new enzyme for biosensor applications}, series = {Analytical \& bioanalytical chemistry}, volume = {402}, journal = {Analytical \& bioanalytical chemistry}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-011-5497-y}, pages = {405 -- 412}, year = {2012}, abstract = {The aromatic peroxygenase (APO; EC 1.11.2.1) from the agraric basidomycete Marasmius rotula (MroAPO) immobilized at the chitosan-capped gold-nanoparticle-modified glassy carbon electrode displayed a pair of redox peaks with a midpoint potential of -278.5 mV vs. AgCl/AgCl (1 M KCl) for the Fe(2+)/Fe(3+) redox couple of the heme-thiolate-containing protein. MroAPO oxidizes aromatic substrates such as aniline, p-aminophenol, hydroquinone, resorcinol, catechol, and paracetamol by means of hydrogen peroxide. The substrate spectrum overlaps with those of cytochrome P450s and plant peroxidases which are relevant in environmental analysis and drug monitoring. In M. rotula peroxygenase-based enzyme electrodes, the signal is generated by the reduction of electrode-active reaction products (e.g., p-benzoquinone and p-quinoneimine) with electro-enzymatic recycling of the analyte. In these enzyme electrodes, the signal reflects the conversion of all substrates thus representing an overall parameter in complex media. The performance of these sensors and their further development are discussed.}, language = {en} } @article{PengUteschYarmanetal.2015, author = {Peng, Lei and Utesch, Tillmann and Yarman, Aysu and Jeoung, Jae-Hun and Steinborn, Silke and Dobbek, Holger and Mroginski, Maria Andrea and Tanne, Johannes and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Surface-Tuned Electron Transfer and Electrocatalysis of Hexameric Tyrosine-Coordinated Heme Protein}, series = {Chemistry - a European journal}, volume = {21}, journal = {Chemistry - a European journal}, number = {20}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201405932}, pages = {7596 -- 7602}, year = {2015}, abstract = {Molecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine-coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self-assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl-terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM. For this "disc" orientation all six hemes are close to the electrode and their direct electron transfer should be efficient. HTHP on all negatively charged SAMs showed a quasi-reversible redox behavior with rate constant k(s) values between 0.93 and 2.86 s(-1) and apparent formal potentials E-app(0)' between -131.1 and -249.1 mV. On the MUA/MU-modified electrode, the maximum surface concentration corresponds to a complete monolayer of the hexameric HTHP in the disc orientation. HTHP electrostatically immobilized on negatively charged SAMs shows electrocatalysis of peroxide reduction and enzymatic oxidation of NADH.}, language = {en} } @article{KurbanogluYarman2020, author = {Kurbanoglu, Sevinc and Yarman, Aysu}, title = {Simultaneous determination of hydrochlorothiazide and irbesartan from pharmaceutical dosage forms with RP-HPLC}, series = {Turkish journal of pharmaceutical sciences}, volume = {17}, journal = {Turkish journal of pharmaceutical sciences}, number = {5}, publisher = {Turkish Pharmacists Association}, address = {{\c{C}}ankaya-Ankara}, issn = {1304-530X}, doi = {10.4274/tjps.galenos.2019.76094}, pages = {523 -- 527}, year = {2020}, abstract = {Objectives: In this work, a simple and rapid liquid chromatographic method for the simultaneous determination of irbesartan (IRBE) and hydrochlorothiazide (HCT) was developed and validated by reverse phase high performance liquid chromatography (RP-HPLC).
Materials and Methods: Experimental conditions such as different buffer solutions, various pH values, temperature, composition of the mobile phase, and the effect of flow rate were optimized.
Results: The developed RP-HPLC method for these antihypertensive agents was wholly validated and IRBE was detected in the linear range of 0.1-25 mu g mL(-1) and HCT was detected in the linear range of 0.25-25 mu g mL(-1). Moreover, the suggested chromatographic technique was successfully applied for the determination of the drugs in human serum and pharmaceutical dosage forms with limit of detection values of 0.008 mu g mL(-1) for IRBE and 0.012 mu g mL(-1) for HCT.
Conclusion: The proposed rapid analysis method of these antihypertensive drugs can be easily used and applied by pharmaceutical companies for which the analysis time is important.}, language = {en} } @article{YarmanKurbanoğluZebgeretal.2021, author = {Yarman, Aysu and Kurbanoğlu, Sevin{\c{c}} and Zebger, Ingo and Scheller, Frieder W.}, title = {Simple and robust}, series = {Sensors and actuators : B, Chemical : an international journal devoted to research and development of chemical transducers}, volume = {330}, journal = {Sensors and actuators : B, Chemical : an international journal devoted to research and development of chemical transducers}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0925-4005}, doi = {10.1016/j.snb.2020.129369}, pages = {12}, year = {2021}, abstract = {A spectrum of 7562 publications on Molecularly Imprinted Polymers (MIPs) has been presented in literature within the last ten years (Scopus, September 7, 2020). Around 10 \% of the papers published on MIPs describe the recognition of proteins. The straightforward synthesis of MIPs is a significant advantage as compared with the preparation of enzymes or antibodies. MIPs have been synthesized from only one up to six functional monomers while proteins are made up of 20 natural amino acids. Furthermore, they can be synthesized against structures of low immunogenicity and allow multi-analyte measurements via multi-target synthesis. Electrochemical methods allow simple polymer synthesis, removal of the template and readout. Among the different sensor configurations electrochemical MIP-sensors provide the broadest spectrum of protein analytes. The sensitivity of MIP-sensors is sufficiently high for biomarkers in the sub-nanomolar region, nevertheless the cross-reactivity of highly abundant proteins in human serum is still a challenge. MIPs for proteins offer innovative tools not only for clinical and environmental analysis, but also for bioimaging, therapy and protein engineering.}, language = {en} } @article{YarmanWollenbergerScheller2013, author = {Yarman, Aysu and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Sensors based on cytochrome P450 and CYP mimicking systems}, series = {ELECTROCHIMICA ACTA}, volume = {110}, journal = {ELECTROCHIMICA ACTA}, publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, address = {OXFORD}, issn = {0013-4686}, doi = {10.1016/j.electacta.2013.03.154}, pages = {63 -- 72}, year = {2013}, abstract = {Cytochrome P450 enzymes (CYPs) act on more than 90 percent of all drugs currently on the market. The catalytic cycle requires electron supply to the heme iron in the presence of oxygen. Electrochemistry allows to characterise the reaction mechanism of these redox enzymes by observing the electron transfer in real time. According to the number of publications on protein electrochemistry CYP has the third position after glucose oxidase and cytochrome c. CYP based enzyme electrodes for the quantification of drugs, metabolites or pesticides have been developed using different iso-enzymes. A crucial step in the sensor development is the efficiency of coupling the biocatalytic systems with the electrode is. In the 1970s the direct electron transfer of heme and heme peptides called microperoxidases (MPs) was used as model of oxidoreductases. They exhibit a broad substrate spectrum including hydroxylation of selected aromatic substrates, demethylation and epoxidation by means of hydrogen peroxide. It overlaps with that of P450 making heme and MPs to alternate recognition elements in biosensors for the detection of typical CYP substrates. In these enzyme electrodes the signal is generated by the conversion of all substrates thus representing in complex media an overall parameter. By combining the biocatalytic substrate conversion with selective binding to a molecularly imprinted polymer layer the specificity has been improved. Here we discuss different approaches of biosensors based on CYP, microperoxidases and catalytically active MIPs and discuss their potential as recognition elements in biosensors. The performance of these sensors and their further development are discussed. (C) 2013 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BognarSupalaYarmanetal.2022, author = {Bogn{\´a}r, Zs{\´o}fia and Supala, Eszter and Yarman, Aysu and Zhang, Xiaorong and Bier, Frank Fabian and Scheller, Frieder W. and Gyurcsanyi, R{\´o}bert E.}, title = {Peptide epitope-imprinted polymer microarrays for selective protein recognition}, series = {Chemical science / RSC, Royal Society of Chemistry}, volume = {13}, journal = {Chemical science / RSC, Royal Society of Chemistry}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2041-6539}, doi = {10.1039/d1sc04502d}, pages = {1263 -- 1269}, year = {2022}, abstract = {We introduce a practically generic approach for the generation of epitope-imprinted polymer-based microarrays for protein recognition on surface plasmon resonance imaging (SPRi) chips. The SPRi platform allows the subsequent rapid screening of target binding kinetics in a multiplexed and label-free manner. The versatility of such microarrays, both as synthetic and screening platform, is demonstrated through developing highly affine molecularly imprinted polymers (MIPs) for the recognition of the receptor binding domain (RBD) of SARS-CoV-2 spike protein. A characteristic nonapeptide GFNCYFPLQ from the RBD and other control peptides were microspotted onto gold SPRi chips followed by the electrosynthesis of a polyscopoletin nanofilm to generate in one step MIP arrays. A single chip screening of essential synthesis parameters, including the surface density of the template peptide and its sequence led to MIPs with dissociation constants (K-D) in the lower nanomolar range for RBD, which exceeds the affinity of RBD for its natural target, angiotensin-convertase 2 enzyme. Remarkably, the same MIPs bound SARS-CoV-2 virus like particles with even higher affinity along with excellent discrimination of influenza A (H3N2) virus. While MIPs prepared with a truncated heptapeptide template GFNCYFP showed only a slightly decreased affinity for RBD, a single mismatch in the amino acid sequence of the template, i.e. the substitution of the central cysteine with a serine, fully suppressed the RBD binding.}, language = {en} } @misc{SchellerZhangYarmanetal.2019, author = {Scheller, Frieder W. and Zhang, Xiaorong and Yarman, Aysu and Wollenberger, Ulla and Gyurcs{\´a}nyi, R{\´o}bert E.}, title = {Molecularly imprinted polymer-based electrochemical sensors for biopolymers}, series = {Current opinion in electrochemistry}, volume = {14}, journal = {Current opinion in electrochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2451-9103}, doi = {10.1016/j.coelec.2018.12.005}, pages = {53 -- 59}, year = {2019}, abstract = {Electrochemical synthesis and signal generation dominate among the almost 1200 articles published annually on protein-imprinted polymers. Such polymers can be easily prepared directly on the electrode surface, and the polymer thickness can be precisely adjusted to the size of the target to enable its free exchange. In this architecture, the molecularly imprinted polymer (MIP) layer represents only one 'separation plate'; thus, the selectivity does not reach the values of 'bulk' measurements. The binding of target proteins can be detected straightforwardly by their modulating effect on the diffusional permeability of a redox marker through the thin MIP films. However, this generates an 'overall apparent' signal, which may include nonspecific interactions in the polymer layer and at the electrode surface. Certain targets, such as enzymes or redox active proteins, enables a more specific direct quantification of their binding to MIPs by in situ determination of the enzyme activity or direct electron transfer, respectively.}, language = {en} }