@article{BalischewskiBhattacharyyaSperlichetal.2022, author = {Balischewski, Christian and Bhattacharyya, Biswajit and Sperlich, Eric and G{\"u}nter, Christina and Beqiraj, Alkit and Klamroth, Tillmann and Behrens, Karsten and Mies, Stefan and Kelling, Alexandra and Lubahn, Susanne and Holtzheimer, Lea and Nitschke, Anne and Taubert, Andreas}, title = {Tetrahalidometallate(II) ionic liquids with more than one metal}, series = {Chemistry - a European journal}, volume = {28}, journal = {Chemistry - a European journal}, number = {64}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3765}, doi = {10.1002/chem.202201068}, pages = {13}, year = {2022}, abstract = {Fifteen N-butylpyridinium salts - five monometallic [C4Py](2)[MBr4] and ten bimetallic [C4Py](2)[(M0.5M0.5Br4)-M-a-Br-b] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 degrees C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10(-5) and 10(-6) S cm(-1). At elevated temperatures, the conductivities reach up to 10(-4) S cm(-1) at 70 degrees C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs.}, language = {en} } @article{OmraniGuenterShamanianetal.2022, author = {Omrani, Hadi and G{\"u}nter, Christina and Shamanian, Gholam Hossein and Omrani, Mehdi}, title = {Post-collisional alkaline lamprophyre magmatism in northern Iran}, series = {The island arc : official journal of the Geological Society of Japan}, volume = {31}, journal = {The island arc : official journal of the Geological Society of Japan}, number = {1}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {1038-4871}, doi = {10.1111/iar.12469}, pages = {18}, year = {2022}, abstract = {The Shanderman lamprophyre dykes crop out in the western part of the Alborz Mountains (Talesh). These rocks are classified as camptonites, composed of primary olivine, Ti-rich diopside, kaersutite, biotite, plagioclase, K-feldspar, and minor Ti-rich spinels, magnetite, pentlandite-pyrrhotite/chalcopyrite, and powellite-scheelite. Secondary analcime-wairakite, serpentines, and prehnite are common minor minerals within the studied rocks. Olivine, Ti-rich diopside, spinel, and amphibole show distinct chemical zoning. Spinels display a core-to-rim decrease in Cr2O3, MgO, and Al2O3 concentrations and an increase in TiO2 and FeOT (total Fe as FeO), reflecting the oxidation state increase due to hydrothermal fluid influx. Low SiO2 contents (< 42 wt\%), high MgO (12.44 to 13.98 wt\%), and Fe2O3T (12.76 to 13.43 wt\%), Cr (318-537 mu g/g) and Ni (231-327 mu g/g) contents indicate the ultrabasic nature of the rocks. The samples show potassic character (2.1-2.8 wt\% K2O), along with elevated LREE and LILE, and also exhibit minor positive Eu anomalies (Eu/Eu* = 1.09 to 1.20). Olivine-spinel geothermometry indicates a maximum crystallization temperature of 1227 degrees C (ave. 988 degrees C +/- 65 degrees C). Exsolution of pentlandite-pyrrhotite/chalcopyrite solid solutions occurred during magma cooling and crystallization. At lower temperatures, analcime-wairakite and prehnite partially replaced plagioclases. The geochemical modeling of the rocks indicates the Shanderman lamprophyre magmas were derived from low-grade melting (< 5\%) of amphibole-bearing garnet lherzolite source without or with very few phlogopites. The primary magma of Shanderman lamprophyres was derived from a depth of similar to 135 km by partial melting of a metasomatized mantle source in a post-collisional environment.}, language = {en} } @misc{BehrensBalischewskiSperlichetal.2022, author = {Behrens, Karsten and Balischewski, Christian and Sperlich, Eric and Menski, Antonia Isabell and Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia and G{\"u}nter, Christina and Lubahn, Susanne and Kelling, Alexandra and Taubert, Andreas}, title = {Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1316}, issn = {1866-8372}, doi = {10.25932/publishup-58751}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587512}, pages = {35072 -- 35082}, year = {2022}, abstract = {Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup.}, language = {en} } @article{BehrensBalischewskiSperlichetal.2022, author = {Behrens, Karsten and Balischewski, Christian and Sperlich, Eric and Menski, Antonia Isabell and Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia and G{\"u}nter, Christina and Lubahn, Susanne and Kelling, Alexandra and Taubert, Andreas}, title = {Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors}, series = {RSC Advances}, volume = {12}, journal = {RSC Advances}, publisher = {RSC}, address = {London}, issn = {2046-2069}, doi = {10.1039/d2ra05581c}, pages = {35072 -- 35082}, year = {2022}, abstract = {Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup.}, language = {en} }