@phdthesis{Klessen2004, author = {Klessen, Ralf S.}, title = {The relation between interstellar turbulence and star formation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001118}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Eine der zentralen Fragestellungen der modernen Astrophysik ist es, unser Verst{\"a}ndnis fuer die Bildung von Sternen und Sternhaufen in unserer Milchstrasse zu erweitern und zu vertiefen. Sterne entstehen in interstellaren Wolken aus molekularem Wasserstoffgas. In den vergangenen zwanzig bis dreißig Jahren ging man davon aus, dass der Prozess der Sternentstehung vor allem durch das Wechselspiel von gravitativer Anziehung und magnetischer Abstossung bestimmt ist. Neuere Erkenntnisse, sowohl von Seiten der Beobachtung als auch der Theorie, deuten darauf hin, dass nicht Magnetfelder, sondern {\"U}berschallturbulenz die Bildung von Sternen in galaktischen Molek{\"u}lwolken bestimmt. Diese Arbeit fasst diese neuen {\"U}berlegungen zusammen, erweitert sie und formuliert eine neue Theorie der Sternentstehung die auf dem komplexen Wechselspiel von Eigengravitation des Wolkengases und der darin beobachteten {\"U}berschallturbulenz basiert. Die kinetische Energie des turbulenten Geschwindigkeitsfeldes ist typischerweise ausreichend, um interstellare Gaswolken auf großen Skalen gegen gravitative Kontraktion zu stabilisieren. Auf kleinen Skalen jedoch f{\"u}hrt diese Turbulenz zu starken Dichtefluktuationen, wobei einige davon die lokale kritische Masse und Dichte f{\"u}r gravitativen Kollaps {\"u}berschreiten koennen. Diese Regionen schockkomprimierten Gases sind es nun, aus denen sich die Sterne der Milchstrasse bilden. Die Effizienz und die Zeitskala der Sternentstehung h{\"a}ngt somit unmittelbar von den Eigenschaften der Turbulenz in interstellaren Gaswolken ab. Sterne bilden sich langsam und in Isolation, wenn der Widerstand des turbulenten Geschwindigkeitsfeldes gegen gravitativen Kollaps sehr stark ist. {\"U}berwiegt hingegen der Einfluss der Eigengravitation, dann bilden sich Sternen in dichten Gruppen oder Haufen sehr rasch und mit grosser Effizienz. Die Vorhersagungen dieser Theorie werden sowohl auf Skalen einzelner Sternentstehungsgebiete als auch auf Skalen der Scheibe unserer Milchstrasse als ganzes untersucht. Es zu erwarten, dass protostellare Kerne, d.h. die direkten Vorl{\"a}ufer von Sternen oder Doppelsternsystemen, eine hochgradig dynamische Zeitentwicklung aufweisen, und keineswegs quasi-statische Objekte sind, wie es in der Theorie der magnetisch moderierten Sternentstehung vorausgesetzt wird. So muss etwa die Massenanwachsrate junger Sterne starken zeitlichen Schwankungen unterworfen sein, was wiederum wichtige Konsequenzen f{\"u}r die statistische Verteilung der resultierenden Sternmassen hat. Auch auf galaktischen Skalen scheint die Wechselwirkung von Turbulenz und Gravitation maßgeblich. Der Prozess wird hier allerdings noch zus{\"a}tzlich moduliert durch chemische Prozesse, die die Heizung und K{\"u}hlung des Gases bestimmen, und durch die differenzielle Rotation der galaktischen Scheibe. Als wichtigster Mechanismus zur Erzeugung der interstellaren Turbulenz l{\"a}sst sich die {\"U}berlagerung vieler Supernova-Explosionen identifizieren, die das Sterben massiver Sterne begleiten und große Mengen an Energie und Impuls freisetzen. Insgesamt unterst{\"u}tzen die Beobachtungsbefunde auf allen Skalen das Bild der turbulenten, dynamischen Sternentstehung, so wie es in dieser Arbeit gezeichnet wird.}, language = {en} } @phdthesis{Schmeja2006, author = {Schmeja, Stefan}, title = {Properties of turbulent star-forming clusters : models versus observations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7364}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Stars are born in turbulent molecular clouds that fragment and collapse under the influence of their own gravity, forming a cluster of hundred or more stars. The star formation process is controlled by the interplay between supersonic turbulence and gravity. In this work, the properties of stellar clusters created by numerical simulations of gravoturbulent fragmentation are compared to those from observations. This includes the analysis of properties of individual protostars as well as statistical properties of the entire cluster. It is demonstrated that protostellar mass accretion is a highly dynamical and time-variant process. The peak accretion rate is reached shortly after the formation of the protostellar core. It is about one order of magnitude higher than the constant accretion rate predicted by the collapse of a classical singular isothermal sphere, in agreement with the observations. For a more reasonable comparison, the model accretion rates are converted to the observables bolometric temperature, bolometric luminosity, and envelope mass. The accretion rates from the simulations are used as input for an evolutionary scheme. The resulting distribution in the Tbol-Lbol-Menv parameter space is then compared to observational data by means of a 3D Kolmogorov-Smirnov test. The highest probability found that the distributions of model tracks and observational data points are drawn from the same population is 70\%. The ratios of objects belonging to different evolutionary classes in observed star-forming clusters are compared to the temporal evolution of the gravoturbulent models in order to estimate the evolutionary stage of a cluster. While it is difficult to estimate absolute ages, the realtive numbers of young stars reveal the evolutionary status of a cluster with respect to other clusters. The sequence shows Serpens as the youngest and IC 348 as the most evolved of the investigated clusters. Finally the structures of young star clusters are investigated by applying different statistical methods like the normalised mean correlation length and the minimum spanning tree technique and by a newly defined measure for the cluster elongation. The clustering parameters of the model clusters correspond in many cases well to those from observed ones. The temporal evolution of the clustering parameters shows that the star cluster builds up from several subclusters and evolves to a more centrally concentrated cluster, while the cluster expands slower than new stars are formed.}, subject = {Sternentstehung}, language = {en} } @phdthesis{Jappsen2005, author = {Jappsen, Anne-Katharina}, title = {Present and early star formation : a study on rotational and thermal properties}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7591}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {We investigate the rotational and thermal properties of star-forming molecular clouds using hydrodynamic simulations. Stars form from molecular cloud cores by gravoturbulent fragmentation. Understanding the angular momentum and the thermal evolution of cloud cores thus plays a fundamental role in completing the theoretical picture of star formation. This is true not only for current star formation as observed in regions like the Orion nebula or the ρ-Ophiuchi molecular cloud but also for the formation of stars of the first or second generation in the universe. In this thesis we show how the angular momentum of prestellar and protostellar cores evolves and compare our results with observed quantities. The specific angular momentum of prestellar cores in our models agree remarkably well with observations of cloud cores. Some prestellar cores go into collapse to build up stars and stellar systems. The resulting protostellar objects have specific angular momenta that fall into the range of observed binaries. We find that collapse induced by gravoturbulent fragmentation is accompanied by a substantial loss of specific angular momentum. This eases the "angular momentum problem" in star formation even in the absence of magnetic fields. The distribution of stellar masses at birth (the initial mass function, IMF) is another aspect that any theory of star formation must explain. We focus on the influence of the thermodynamic properties of star-forming gas and address this issue by studying the effects of a piecewise polytropic equation of state on the formation of stellar clusters. We increase the polytropic exponent γ from a value below unity to a value above unity at a certain critical density. The change of the thermodynamic state at the critical density selects a characteristic mass scale for fragmentation, which we relate to the peak of the IMF observed in the solar neighborhood. Our investigation generally supports the idea that the distribution of stellar masses depends mainly on the thermodynamic state of the gas. A common assumption is that the chemical evolution of the star-forming gas can be decoupled from its dynamical evolution, with the former never affecting the latter. Although justified in some circumstances, this assumption is not true in every case. In particular, in low-metallicity gas the timescales for reaching the chemical equilibrium are comparable or larger than the dynamical timescales. In this thesis we take a first approach to combine a chemical network with a hydrodynamical code in order to study the influence of low levels of metal enrichment on the cooling and collapse of ionized gas in small protogalactic halos. Our initial conditions represent protogalaxies forming within a fossil HII region -- a previously ionized HII region which has not yet had time to cool and recombine. We show that in these regions, H2 is the dominant and most effective coolant, and that it is the amount of H2 formed that controls whether or not the gas can collapse and form stars. For metallicities Z <= 10-3 Zsun, metal line cooling alters the density and temperature evolution of the gas by less than 1\% compared to the metal-free case at densities below 1 cm-3 and temperatures above 2000 K. We also find that an external ultraviolet background delays or suppresses the cooling and collapse of the gas regardless of whether it is metal-enriched or not. Finally, we study the dependence of this process on redshift and mass of the dark matter halo.}, subject = {Sternentstehung}, language = {en} } @phdthesis{Ramachandran2019, author = {Ramachandran, Varsha}, title = {Massive star evolution, star formation, and feedback at low metallicity}, doi = {10.25932/publishup-43245}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432455}, school = {Universit{\"a}t Potsdam}, pages = {291}, year = {2019}, abstract = {The goal of this thesis is to broaden the empirical basis for a better, comprehensive understanding of massive star evolution, star formation and feedback at low metallicity. Low metallicity massive stars are a key to understand the early universe. Quantitative information on metal-poor massive stars was sparse before. The quantitative spectroscopic studies of massive star populations associated with large-scale ISM structures were not performed at low metallicity before, but are important to investigate star-formation histories and feedback in detail. Much of this work relies on spectroscopic observations with VLT-FLAMES of ~500 OB stars in the Magellanic Clouds. When available, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. The two representative young stellar populations that have been studied are associated with the superbubble N 206 in the Large Magellanic Cloud (LMC) and with the supergiant shell SMC-SGS 1 in the Wing of the Small Magellanic Cloud (SMC), respectively. We performed spectroscopic analyses of the massive stars using the nonLTE Potsdam Wolf-Rayet (PoWR) model atmosphere code. We estimated the stellar, wind, and feedback parameters of the individual massive stars and established their statistical distributions. The mass-loss rates of N206 OB stars are consistent with theoretical expectations for LMC metallicity. The most massive and youngest stars show nitrogen enrichment at their surface and are found to be slower rotators than the rest of the sample. The N 206 complex has undergone star formation episodes since more than 30 Myr, with a current star formation rate higher than average in the LMC. The spatial age distribution of stars across the complex possibly indicates triggered star formation due to the expansion of the superbubble. Three very massive, young Of stars in the region dominate the ionizing and mechanical feedback among hundreds of other OB stars in the sample. The current stellar wind feedback rate from the two WR stars in the complex is comparable to that released by the whole OB sample. We see only a minor fraction of this stellar wind feedback converted into X-ray emission. In this LMC complex, stellar winds and supernovae equally contribute to the total energy feedback, which eventually powered the central superbubble. However, the total energy input accumulated over the time scale of the superbubble significantly exceeds the observed energy content of the complex. The lack of energy along with the morphology of the complex suggests a leakage of hot gas from the superbubble. With a detailed spectroscopic study of massive stars in SMC-SGS 1, we provide the stellar and wind parameters of a large sample of OB stars at low metallicity, including those in the lower mass-range. The stellar rotation velocities show a broad, tentatively bimodal distribution, with Be stars being among the fastest. A few very luminous O stars are found close to the main sequence, while all other, slightly evolved stars obey a strict luminosity limit. Considering additional massive stars in evolved stages, with published parameters and located all over the SMC, essentially confirms this picture. The comparison with single-star evolutionary tracks suggests a dichotomy in the fate of massive stars in the SMC. Only stars with an initial mass below 30 solar masses seem to evolve from the main sequence to the cool side of the HRD to become a red supergiant and to explode as type II-P supernova. In contrast, more massive stars appear to stay always hot and might evolve quasi chemically homogeneously, finally collapsing to relatively massive black holes. However, we find no indication that chemical mixing is correlated with rapid rotation. We measured the key parameters of stellar feedback and established the links between the rates of star formation and supernovae. Our study demonstrates that in metal-poor environments stellar feedback is dominated by core-collapse supernovae in combination with winds and ionizing radiation supplied by a few of the most massive stars. We found indications of the stochastic mode of star formation, where the resulting stellar population is fully capable of producing large-scale structures such as the supergiant shell SMC-SGS 1 in the Wing. The low level of feedback in metal-poor stellar populations allows star formation episodes to persist over long timescales. Our study showcases the importance of quantitative spectroscopy of massive stars with adequate stellar-atmosphere models in order to understand star-formation, evolution, and feedback. The stellar population analyses in the LMC and SMC make us understand that massive stars and their impact can be very different depending on their environment. Obviously, due to their different metallicity, the massive stars in the LMC and the SMC follow different evolutionary paths. Their winds differ significantly, and the key feedback agents are different. As a consequence, the star formation can proceed in different modes.}, language = {en} }