@phdthesis{Raschke2023, author = {Raschke, Stefanie}, title = {Characterization of selenium and copper in cell systems of the neurovascular unit}, doi = {10.25932/publishup-60366}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-603666}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 184, v}, year = {2023}, abstract = {The trace elements, selenium (Se) and copper (Cu) play an important role in maintaining normal brain function. Since they have essential functions as cofactors of enzymes or structural components of proteins, an optimal supply as well as a well-defined homeostatic regulation are crucial. Disturbances in trace element homeostasis affect the health status and contribute to the incidence and severity of various diseases. The brain in particular is vulnerable to oxidative stress due to its extensive oxygen consumption and high energy turnover, among other factors. As components of a number of antioxidant enzymes, both elements are involved in redox homeostasis. However, high concentrations are also associated with the occurrence of oxidative stress, which can induce cellular damage. Especially high Cu concentrations in some brain areas are associated with the development and progression of neurodegenerative diseases such as Alzheimer's disease (AD). In contrast, reduced Se levels were measured in brains of AD patients. The opposing behavior of Cu and Se renders the study of these two trace elements as well as the interactions between them being particularly relevant and addressed in this work.}, language = {en} }