@misc{SchmidtWalzJonesetal.2016, author = {Schmidt, Katja and Walz, Ariane and Jones, Isobel and Metzger, Marc J.}, title = {The sociocultural value of upland regions in the vicinity of cities in comparison with urban green spaces}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {920}, issn = {1866-8372}, doi = {10.25932/publishup-44201}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442010}, pages = {465 -- 474}, year = {2016}, abstract = {Mountain and upland regions provide a wide range of ecosystem services to residents and visitors. While ecosystem research in mountain regions is on the rise, the linkages between sociocultural benefits and ecological systems remain little explored. Mountainous regions close to urban areas provide numerous benefits to a large number of individuals, suggesting a high social value, particularly for cultural ecosystem services. We explored and compared visitors' valuation of ecosystem services in the Pentland Hills, an upland range close to the city of Edinburgh, Scotland, and urban green spaces within Edinburgh. Based on 715 responses to user surveys in both study areas, we identified intense use and high social value for both areas. Several ecosystem services were perceived as equally important in both areas, including many cultural ecosystem services. Significant differences were revealed in the value of physically using nature, which Pentland Hills users rated more highly than those in the urban green spaces, and of mitigation of pollutants and carbon sequestration, for which the urban green spaces were valued more highly. Major differences were further identified for preferences in future land management, with nature-oriented management preferred by about 57\% of the interviewees in the Pentland Hills, compared to 31\% in the urban parks. The study highlights the substantial value of upland areas in close vicinity to a city for physically using and experiencing nature, with a strong acceptance of nature conservation.}, language = {en} } @article{HuberRiglingBebietal.2013, author = {Huber, Robert and Rigling, Andreas and Bebi, Peter and Brand, Fridolin Simon and Briner, Simon and Buttler, Alexandre and Elkin, Che and Gillet, Francois and Gret-Regamey, Adrienne and Hirschi, Christian and Lischke, Heike and Scholz, Roland Werner and Seidl, Roman and Spiegelberger, Thomas and Walz, Ariane and Zimmermann, Willi and Bugmann, Harald}, title = {Sustainable land use in Mountain Regions under global change synthesis across scales and disciplines}, series = {Ecology and society : a journal of integrative science for resilience and sustainability}, volume = {18}, journal = {Ecology and society : a journal of integrative science for resilience and sustainability}, number = {3}, publisher = {Resilience Alliance}, address = {Wolfville}, issn = {1708-3087}, doi = {10.5751/ES-05499-180336}, pages = {20}, year = {2013}, abstract = {Mountain regions provide essential ecosystem goods and services (EGS) for both mountain dwellers and people living outside these areas. Global change endangers the capacity of mountain ecosystems to provide key services. The Mountland project focused on three case study regions in the Swiss Alps and aimed to propose land-use practices and alternative policy solutions to ensure the provision of key EGS under climate and land-use changes. We summarized and synthesized the results of the project and provide insights into the ecological, socioeconomic, and political processes relevant for analyzing global change impacts on a European mountain region. In Mountland, an integrative approach was applied, combining methods from economics and the political and natural sciences to analyze ecosystem functioning from a holistic human-environment system perspective. In general, surveys, experiments, and model results revealed that climate and socioeconomic changes are likely to increase the vulnerability of the EGS analyzed. We regard the following key characteristics of coupled human-environment systems as central to our case study areas in mountain regions: thresholds, heterogeneity, trade-offs, and feedback. Our results suggest that the institutional framework should be strengthened in a way that better addresses these characteristics, allowing for (1) more integrative approaches, (2) a more network-oriented management and steering of political processes that integrate local stakeholders, and (3) enhanced capacity building to decrease the identified vulnerability as central elements in the policy process. Further, to maintain and support the future provision of EGS in mountain regions, policy making should also focus on project-oriented, cross-sectoral policies and spatial planning as a coordination instrument for land use in general.}, language = {en} } @misc{vanReesWaylenSchmidtKloiberetal.2020, author = {van Rees, Charles B. and Waylen, Kerry A. and Schmidt-Kloiber, Astrid and Thackeray, Stephen J. and Kalinkat, Gregor and Martens, Koen and Domisch, Sami and Lillebo, Ana and Hermoso, Virgilio and Grossart, Hans-Peter and Schinegger, Rafaela and Decleer, Kris and Adriaens, Tim and Denys, Luc and Jaric, Ivan and Janse, Jan H. and Monaghan, Michael T. and De Wever, Aaike and Geijzendorffer, Ilse and Adamescu, Mihai C. and J{\"a}hnig, Sonja C.}, title = {Safeguarding freshwater life beyond 2020}, series = {Conservation letters}, volume = {14}, journal = {Conservation letters}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1755-263X}, doi = {10.1111/conl.12771}, pages = {17}, year = {2020}, abstract = {Plans are currently being drafted for the next decade of action on biodiversity-both the post-2020 Global Biodiversity Framework of the Convention on Biological Diversity (CBD) and Biodiversity Strategy of the European Union (EU). Freshwater biodiversity is disproportionately threatened and underprioritized relative to the marine and terrestrial biota, despite supporting a richness of species and ecosystems with their own intrinsic value and providing multiple essential ecosystem services. Future policies and strategies must have a greater focus on the unique ecology of freshwater life and its multiple threats, and now is a critical time to reflect on how this may be achieved. We identify priority topics including environmental flows, water quality, invasive species, integrated water resources management, strategic conservation planning, and emerging technologies for freshwater ecosystem monitoring. We synthesize these topics with decades of first-hand experience and recent literature into 14 special recommendations for global freshwater biodiversity conservation based on the successes and setbacks of European policy, management, and research. Applying and following these recommendations will inform and enhance the ability of global and European post-2020 biodiversity agreements to halt and reverse the rapid global decline of freshwater biodiversity.}, language = {en} } @article{HanKuhlicke2019, author = {Han, Sungju and Kuhlicke, Christian}, title = {Reducing Hydro-Meteorological Risk by Nature-Based Solutions: What Do We}, series = {Water}, volume = {11}, journal = {Water}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w11122599}, pages = {23}, year = {2019}, abstract = {Nature-based solutions (NBS) have recently received attention due to their potential ability to sustainably reduce hydro-meteorological risks, providing co-benefits for both ecosystems and affected people. Therefore, pioneering research has dedicated efforts to optimize the design of NBS, to evaluate their wider co-benefits and to understand promoting and/or hampering governance conditions for the uptake of NBS. In this article, we aim to complement this research by conducting a comprehensive literature review of factors shaping people's perceptions of NBS as a means to reduce hydro-meteorological risks. Based on 102 studies, we identified six topics shaping the current discussion in this field of research: (1) valuation of the co-benefits (including those related to ecosystems and society); (2) evaluation of risk reduction efficacy; (3) stakeholder participation; (4) socio-economic and location-specific conditions; (5) environmental attitude, and (6) uncertainty. Our analysis reveals that concerned empirical insights are diverse and even contradictory, they vary in the depth of the insights generated and are often not comparable for a lack of a sound theoretical-methodological grounding. We, therefore, propose a conceptual model outlining avenues for future research by indicating potential inter-linkages between constructs underlying perceptions of NBS to hydro-meteorological risks.}, language = {en} } @article{SchwarzerHeinkenLuthardtetal.2013, author = {Schwarzer, Christian and Heinken, Thilo and Luthardt, Vera and Joshi, Jasmin Radha}, title = {Latitudinal shifts in species interactions interfere with resistance of southern but not of northern bog-plant communities to experimental climate change}, series = {The journal of ecology}, volume = {101}, journal = {The journal of ecology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/1365-2745.12158}, pages = {1484 -- 1497}, year = {2013}, abstract = {The persistence of species under changed climatic conditions depends on adaptations and plastic responses to these conditions and on interactions with their local plant community resulting in direct and indirect effects of changed climatic conditions. Populations at species' range margins may be especially crucial in containing a gene pool comprising adaptations to extreme climatic conditions. Many species of northern European bog ecosystems reach their southern lowland range limit in central Europe. In a common-garden experiment, we experimentally assessed the impact of projected climatic changes on five bog-plant species (including peat moss Sphagnum magellanicum) sampled along a latitudinal gradient of 1400km from Scandinavia to the marginal lowland populations in Germany. Populations were cultivated in monocultures and in experimental communities composed of all five species from their local community, and exposed to five combinations of three climate treatments (warming, fluctuating water-tables, fertilization) in a southern common garden. Whereas most monocultures showed a decreasing biomass production from southern to northern origins under southern environmental conditions, in the experimental mixed-species communities, an increasing biomass production towards northern communities was observed together with a shift in interspecific interactions along the latitudinal gradient. While negative dominance effects prevailed in southern communities, higher net biodiversity effects were observed in northern subarctic communities. The combined effects of climate treatments increased biomass production in monocultures of most origins. In communities, however, overall the treatments did not result in significantly changed biomass production. Among individual treatments, water-table fluctuations caused a significant decrease in biomass production, but only in southern communities, indicating higher vulnerability to changed climatic conditions. Here, negative effects of climate treatments on graminoids were not compensated by the slightly increased growth of peat moss that benefited from interspecific interactions only in northern communities.Synthesis. We conclude that shifting interactions within multispecies communities caused pronounced responses to changed climatic conditions in wetland communities of temperate southern marginal, but not of northern subarctic origin. Therefore, future models investigating the impacts of climate change on plant communities should consider geographical variation in species interactions an important factor influencing community responses to changed climatic conditions.}, language = {en} } @article{AllanManningAltetal.2015, author = {Allan, Eric and Manning, Pete and Alt, Fabian and Binkenstein, Julia and Blaser, Stefan and Bl{\"u}thgen, Nico and B{\"o}hm, Stefan and Grassein, Fabrice and H{\"o}lzel, Norbert and Klaus, Valentin H. and Kleinebecker, Till and Morris, E. Kathryn and Oelmann, Yvonne and Prati, Daniel and Renner, Swen C. and Rillig, Matthias C. and Schaefer, Martin and Schloter, Michael and Schmitt, Barbara and Sch{\"o}ning, Ingo and Schrumpf, Marion and Solly, Emily and Sorkau, Elisabeth and Steckel, Juliane and Steffen-Dewenter, Ingolf and Stempfhuber, Barbara and Tschapka, Marco and Weiner, Christiane N. and Weisser, Wolfgang W. and Werner, Michael and Westphal, Catrin and Wilcke, Wolfgang and Fischer, Markus}, title = {Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition}, series = {Ecology letters}, volume = {18}, journal = {Ecology letters}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12469}, pages = {834 -- 843}, year = {2015}, abstract = {Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.}, language = {en} } @article{RaatzBacchiPirhoferWalzletal.2019, author = {Raatz, Larissa and Bacchi, Nina and Pirhofer Walzl, Karin and Glemnitz, Michael and M{\"u}ller, Marina E. H. and Jasmin Radha, Jasmin and Scherber, Christoph}, title = {How much do we really lose?}, series = {Ecology and Evolution}, volume = {9}, journal = {Ecology and Evolution}, number = {13}, publisher = {John Wiley \& Sons}, address = {S.I.}, issn = {2045-7758}, doi = {10.1002/ece3.5370}, pages = {7838 -- 7848}, year = {2019}, abstract = {Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large-scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field-to-field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid-field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log-scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near G{\"o}ttingen, and 2015-2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11\%-38\% in comparison with mid-field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95\% of mid-field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in-field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes.}, language = {en} } @article{RaatzBacchiWalzletal.2019, author = {Raatz, Larissa and Bacchi, Nina and Walzl, Karin Pirhofer and Glemnitz, Michael and M{\"u}ller, Marina E. H. and Jasmin Radha, Jasmin and Scherber, Christoph}, title = {How much do we really lose?}, series = {Ecology and evolution}, volume = {9}, journal = {Ecology and evolution}, number = {13}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.5370}, pages = {7838 -- 7848}, year = {2019}, abstract = {Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large-scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field-to-field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid-field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log-scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near Gottingen, and 2015-2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11\%-38\% in comparison with mid-field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95\% of mid-field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in-field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes.}, language = {en} } @misc{RaatzBacchiPirhoferWalzletal.2019, author = {Raatz, Larissa and Bacchi, Nina and Pirhofer Walzl, Karin and Glemnitz, Michael and M{\"u}ller, Marina E. H. and Jasmin Radha, Jasmin and Scherber, Christoph}, title = {How much do we really lose?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {811}, issn = {1866-8372}, doi = {10.25932/publishup-44331}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-443313}, pages = {13}, year = {2019}, abstract = {Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large-scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field-to-field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid-field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log-scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near G{\"o}ttingen, and 2015-2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11\%-38\% in comparison with mid-field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95\% of mid-field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in-field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes.}, language = {en} } @article{RottstockJoshiKummeretal.2014, author = {Rottstock, Tanja and Joshi, Jasmin Radha and Kummer, Volker and Fischer, Markus}, title = {Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant}, series = {Ecology : a publication of the Ecological Society of America}, volume = {95}, journal = {Ecology : a publication of the Ecological Society of America}, number = {7}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, pages = {1907 -- 1917}, year = {2014}, abstract = {Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen ("pathogens" hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.}, language = {en} }