@misc{LiApriyantoFloresCastellanosetal.2022, author = {Li, Xiaoping and Apriyanto, Ardha and Flores Castellanos, Junio and Compart, Julia and Muntaha, Sidratul Nur and Fettke, J{\"o}rg}, title = {Dpe2/phs1 revealed unique starch metabolism with three distinct phases characterized by different starch granule numbers per chloroplast, allowing insights into the control mechanism of granule number regulation by gene co-regulation and metabolic profiling}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1286}, issn = {1866-8372}, doi = {10.25932/publishup-57125}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571250}, pages = {16}, year = {2022}, abstract = {An Arabidopsis mutant lacking both the cytosolic Disproportionating enzyme 2 (DPE2) and the plastidial glucan Phosphorylase 1 (PHS1) revealed a unique starch metabolism. Dpe2/phs1 has been reported to have only one starch granule number per chloroplast when grown under diurnal rhythm. For this study, we analyzed dpe2/phs1 in details following the mutant development, and found that it showed three distinct periods of granule numbers per chloroplast, while there was no obvious change observed in Col-0. In young plants, the starch granule number was similar to that in Col-0 at first, and then decreased significantly, down to one or no granule per chloroplast, followed by an increase in the granule number. Thus, in dpe2/phs1, control over the starch granule number is impaired, but it is not defective in starch granule initiation. The data also indicate that the granule number is not fixed, and is regulated throughout plant growth. Furthermore, the chloroplasts revealed alterations during these three periods, with a partially strong aberrant morphology in the middle phase. Interestingly, the unique metabolism was perpetuated when starch degradation was further impaired through an additional lack of Isoamylase 3 (ISA3) or Starch excess 4 (SEX4). Transcriptomic studies and metabolic profiling revealed the co-regulation of starch metabolism-related genes and a clear metabolic separation between the periods. Most senescence-induced genes were found to be up-regulated more than twice in the starch-less mature leaves. Thus, dpe2/phs1 is a unique plant material source, with which we may study starch granule number regulation to obtain a more detailed understanding.}, language = {en} } @article{LiApriyantoFloresCastellanosetal.2022, author = {Li, Xiaoping and Apriyanto, Ardha and Flores Castellanos, Junio and Compart, Julia and Muntaha, Sidratul Nur and Fettke, J{\"o}rg}, title = {Dpe2/phs1 revealed unique starch metabolism with three distinct phases characterized by different starch granule numbers per chloroplast, allowing insights into the control mechanism of granule number regulation by gene co-regulation and metabolic profiling}, series = {Frontiers in Plant Science}, journal = {Frontiers in Plant Science}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {1664-462X}, doi = {10.3389/fpls.2022.1039534}, pages = {1 -- 16}, year = {2022}, abstract = {An Arabidopsis mutant lacking both the cytosolic Disproportionating enzyme 2 (DPE2) and the plastidial glucan Phosphorylase 1 (PHS1) revealed a unique starch metabolism. Dpe2/phs1 has been reported to have only one starch granule number per chloroplast when grown under diurnal rhythm. For this study, we analyzed dpe2/phs1 in details following the mutant development, and found that it showed three distinct periods of granule numbers per chloroplast, while there was no obvious change observed in Col-0. In young plants, the starch granule number was similar to that in Col-0 at first, and then decreased significantly, down to one or no granule per chloroplast, followed by an increase in the granule number. Thus, in dpe2/phs1, control over the starch granule number is impaired, but it is not defective in starch granule initiation. The data also indicate that the granule number is not fixed, and is regulated throughout plant growth. Furthermore, the chloroplasts revealed alterations during these three periods, with a partially strong aberrant morphology in the middle phase. Interestingly, the unique metabolism was perpetuated when starch degradation was further impaired through an additional lack of Isoamylase 3 (ISA3) or Starch excess 4 (SEX4). Transcriptomic studies and metabolic profiling revealed the co-regulation of starch metabolism-related genes and a clear metabolic separation between the periods. Most senescence-induced genes were found to be up-regulated more than twice in the starch-less mature leaves. Thus, dpe2/phs1 is a unique plant material source, with which we may study starch granule number regulation to obtain a more detailed understanding.}, language = {en} } @phdthesis{Scheidig2006, author = {Scheidig, Andreas}, title = {Molekulare Untersuchungen zum St{\"a}rkeabbau in vegetativen Pflanzenteilen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-11857}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {In der vorliegenden Arbeit wurden cDNAs, kodierend f{\"u}r bisher unbekannte st{\"a}rkeabbauende Enzyme, aus Kartoffel isoliert und funktionell analysiert. Die Isolation der cDNAs erfolgte mit Hilfe eines Systems, welches sich der funktionellen Expression von cDNA-Bibliotheken in E. coli bediente. Die mit diesem System zur Expression gebrachten cDNA-Bibliotheken wurden im Rahmen dieser Arbeit hergestellt. Zum einen handelte es sich um eine blattspezifische Phagen-cDNA-Bibliothek (Proben wurden w{\"a}hrend des Tag/Nacht {\"U}bergangs genommen), zum anderen um eine knollenspezifische cDNA-Bibliothek aus kaltgelagerten Knollen. Nach der {\"U}berf{\"u}hrung der Phagen-Bibliotheken in Plasmid-Bibliotheken wurden diese funktionell in dem E. coli Stamm KV832 exprimiert. Der Stamm KV832 wurde aufgrund seiner F{\"a}higkeit, lineare Glucane zu akkumulieren, ausgew{\"a}hlt. Werden Glucan akkumulierende KV832 Kolonien mit Jod bedampft, so zeigen diese eine typische Blauf{\"a}rbung. Nach der Expression der Plasmid-Bibliotheken in KV832 wurden solche Kolonien weiter untersucht, welche in ihrer F{\"a}rbung von den blauen Kolonien abwichen. Mittels eines zweiten E. coli Stamms, PGM -, welcher ebenfalls in der Lage ist, lineare Glucane zu akkumulieren, wurden die Ergebnisse f{\"u}r KV832 best{\"a}tigt. Die funktionelle Expression der Bibliotheken f{\"u}hrte zur Isolation einer Reihe von unbekannten cDNAs. Zwei dieser cDNAs wurden im Rahmen dieser Arbeit weiterf{\"u}hrend untersucht. Zum einen handelte es sich um eine cDNA, die f{\"u}r eine bis dahin unbekannte β-Amylase aus Kartoffel kodierte und deren Homolog aus Arabidopsis (CT-BMY) im Laufe dieser Arbeit von Lao et al. (1999) ver{\"o}ffentlicht wurde, zum anderen um eine cDNA, die f{\"u}r ein unbekanntes Enzym kodierte (DSD10). Das Arabidopsis Homolog zu DSD10 wurde im Zuge der Arabidopsis Genominitiative Ende 2000 publiziert. Im Rahmen dieser Arbeit konnte gezeigt werden, dass die isolierte β-Amylase cDNA f{\"u}r eine funktionelle β-Amylase kodiert und dieses Enzym in der Lage ist, neben l{\"o}slicher auch rohe St{\"a}rke anzugreifen. Lokalisationsexperimente zeigten, dass das Enzym in isolierte Erbsenchloroplasten importiert wurde und dass die 100 N-terminalen Aminos{\"a}uren f{\"u}r den Import in die Plastiden ausreichten. Die β-Amylase wurde als PCT-BMYI bezeichnet. Die »antisense«-Inhibierung von PCT-BMYI f{\"u}hrte zu einem Hochst{\"a}rke-Ph{\"a}notyp der Bl{\"a}tter, sowie zu einem Anstieg der Trockenmasse. Der Hochst{\"a}rke-Ph{\"a}notyp ist auf eine Reduktion der St{\"a}rkemobilisierung und die daraus folgende Akkumulation der St{\"a}rke w{\"a}hrend der Vegetationsperiode zur{\"u}ckzuf{\"u}hren. Damit konnte erstmals die physiologische Bedeutung einer β-Amylase f{\"u}r den Abbau der transitorischen St{\"a}rke gezeigt werden. Kein Einfluss zeigte die »antisense« Inhibierung von PCT-BMYI auf den k{\"a}lteinduzierten Abbau der Speicherst{\"a}rke in Knollen. Es konnte auch kein Unterschied im Keimverhalten oder der Entwicklung der neuen Pflanze beobachtet werden. Ein Teil der Ergebnisse zu PCT-BMYI wurde bereits publiziert (Scheidig et al., 2002). Die isolierten cDNAs dsd10, sgeI (die Volll{\"a}ngen cDNA zu dsd10) und das Arabidopsis Homolog asgeI kodieren f{\"u}r Enzyme, welche α-Amylase-Aktivit{\"a}t besitzen, aber keine Homologie zu bekannten α-Amylasen aufweisen. Ein m{\"o}gliches Glucoamylase Motiv erwies sich f{\"u}r die Aktivit{\"a}t des Proteins als essentiell. Lokalisationsexperimente deuteten auf den Import des SGEI Proteins in isolierte Erbsenchloroplasten hin. Die »antisense«-Inhibierung von sgeI f{\"u}hrte in den entsprechenden Linien zu einem Hochst{\"a}rke-Ph{\"a}notyp in Bl{\"a}ttern, einem Anstieg der Trockenmasse in Bl{\"a}ttern, sowie zu gr{\"o}ßeren St{\"a}rkek{\"o}rnern in einer der untersuchten Linien. Ein nicht erwarteter Effekt zeigte sich in Bl{\"a}ttern der entsprechenden Linien, welche f{\"u}r l{\"a}ngere Zeit dunkel gehalten wurden. Die Bl{\"a}tter der untransformierten Kontrolle waren abgestorben, wohingegen die Bl{\"a}tter der SGEI »antisense« Linien gr{\"u}n und vital erschienen. Die α- und β-Amylase-Aktivit{\"a}t war in Bl{\"a}ttern der SGEI »antisense« Linien reduziert, weshalb eine genaue Zuordnung der Funktion von SGEI nicht m{\"o}glich war. Die vorliegenden Ergebnisse zu den SGEI »antisense« Linien deuten aber darauf hin, dass der beobachtete Hochst{\"a}rke-Ph{\"a}notyp nicht alleine auf die Reduktion der β-Amylase-Aktivit{\"a}t zur{\"u}ckzuf{\"u}hren ist. Ein Einfluss von SGEI auf den k{\"a}lteinduzierten Abbau der Speicherst{\"a}rke konnte nicht beobachtet werden. Es konnte auch hier kein Unterschied im Keimverhalten oder der Entwicklung der neuen Pflanze beobachtet werden.}, subject = {Screening}, language = {de} }