@misc{SchoeneRochSchulzetal.2017, author = {Sch{\"o}ne, Anne-Christin and Roch, Toralf and Schulz, Burkhard and Lendlein, Andreas}, title = {Evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer techniques}, series = {Interface : journal of the Royal Society}, volume = {14}, journal = {Interface : journal of the Royal Society}, publisher = {Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2016.1028}, pages = {18}, year = {2017}, abstract = {Polymeric biomaterials are of specific relevance in medical and pharmaceutical applications due to their wide range of tailorable properties and functionalities. The knowledge about interactions of biomaterials with their biological environment is of crucial importance for developing highly sophisticated medical devices. To achieve optimal in vivo performance, a description at the molecular level is required to gain better understanding about the surface of synthetic materials for tailoring their properties. This is still challenging and requires the comprehensive characterization of morphological structures, polymer chain arrangements and degradation behaviour. The review discusses selected aspects for evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer methods as powerful techniques for studying interfacial properties, such as morphological and degradation processes. The combination of spectroscopic, microscopic and scattering methods with the Langmuir techniques adapted to polymers can substantially improve the understanding of their in vivo behaviour.}, language = {en} } @article{SchoeneRichauKratzetal.2015, author = {Sch{\"o}ne, Anne-Christin and Richau, Klaus and Kratz, Karl and Schulz, Burkhard and Lendlein, Andreas}, title = {Influence of Diurethane Linkers on the Langmuir Layer Behavior of Oligo[(rac-lactide)-co-glycolide]-based Polyesterurethanes}, series = {Macromolecular rapid communications}, volume = {36}, journal = {Macromolecular rapid communications}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201500316}, pages = {1910 -- 1915}, year = {2015}, abstract = {Three oligo[(rac-lactide)-co-glycolide] based polyesterurethanes (OLGA-PUs) containing different diurethane linkers are investigated by the Langmuir monolayer technique and compared to poly[(rac-lactide)-co-glycolide] (PLGA) to elucidate the influence of the diurethane junction units on hydrophilicity and packing motifs of these polymers at the air-water interface. The presence of diurethane linkers does not manifest itself in the Langmuir layer behavior both in compression and expansion experiments when monomolecular films of OLGA-PUs are spread on the water surface. However, the linker retard the evolution of morphological structures at intermediate compression level under isobaric conditions (with a surface pressure greater than 11 mN m(-1)) compared to the PLGA, independent on the chemical structure of the diurethane moiety. The layer thicknesses of both OLGA-PU and PLGA films decrease in the high compression state with decreasing surface pressure, as deduced from ellipsometric data. All films must be described with the effective medium approximation as water swollen layers.}, language = {en} }