@article{NeugebauerBrauerDraegeretal.2012, author = {Neugebauer, Ina and Brauer, Achim and Draeger, Nadine and Dulski, Peter and Wulf, Sabine and Plessen, Birgit and Mingram, Jens and Herzschuh, Ulrike and Brande, Arthur}, title = {A Younger Dryas varve chronology from the Rehwiese palaeolake record in NE-Germany}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {36}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {10}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2011.12.010}, pages = {91 -- 102}, year = {2012}, abstract = {The first 1400-year floating varve chronology for north-eastern Germany covering the late Allered to the early Holocene has been established by microscopic varve counts from the Rehwiese palaeolake sediment record. The Laacher See Tephra (LST), at the base of the studied interval, forms the tephrochronological anchor point. The fine laminations were examined using a combination of micro-facies and mu XRF analyses and are typical of calcite varves, which in this case provide mainly a warm season signal. Two varve types with different sub-layer structures have been distinguished: (I) complex varves consisting of up to four seasonal sub-layers formed during the Allered and early Holocene periods, and, (II) simple two sub-layer type varves only occurring during the Younger Dryas. The precision of the chronology has been improved by varve-to-varve comparison of two independently analyzed sediment profiles based on well-defined micro-marker layers. This has enabled both (1) the precise location of single missing varies in one of the sediment profiles, and, (2) the verification of varve interpolation in disturbed varve intervals in the parallel core. Inter-annual and decadal-scale variability in sediment deposition processes were traced by multi-proxy data series including seasonal layer thickness, high-resolution element scans and total organic and inorganic carbon data at a five-varve resolution. These data support the idea of a two-phase Younger Dryas, with the first interval (12,675-12,275 varve years BP) characterised by a still significant but gradually decreasing warm-season calcite precipitation and a second phase (12,275-11,690 varve years BP) with only weak calcite precipitation. Detailed correlation of these two phases with the Meerfelder Maar record based on the LST isochrone and independent varve counts provides clues about regional differences and seasonal aspects of YD climate change along a transect from a location proximal to the North Atlantic in the west to a more continental site in the east}, language = {en} } @article{HeineckeEppReschkeetal.2017, author = {Heinecke, Liv and Epp, Laura Saskia and Reschke, Maria and Stoof-Leichsenring, Kathleen Rosemarie and Mischke, Steffen and Plessen, Birgit and Herzschuh, Ulrike}, title = {Aquatic macrophyte dynamics in Lake Karakul (Eastern Pamir) over the last 29 cal ka revealed by sedimentary ancient DNA and geochemical analyses of macrofossil remains}, series = {Journal of paleolimnolog}, volume = {58}, journal = {Journal of paleolimnolog}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-017-9986-7}, pages = {403 -- 417}, year = {2017}, language = {en} } @article{ZibulskiWesenerWilkesetal.2017, author = {Zibulski, Romy and Wesener, Felix and Wilkes, Heinz and Plessen, Birgit and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {C / N ratio, stable isotope (delta C-13, delta N-15), and n-alkane patterns of brown mosses along hydrological gradients of low-centred polygons of the Siberian Arctic}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-1617-2017}, pages = {1617 -- 1630}, year = {2017}, abstract = {Mosses are a major component of the arctic vegetation, particularly in wetlands. We present C / N atomic ratio, delta C-13 and delta N-15 data of 400 brown-moss samples belonging to 10 species that were collected along hydrological gradients within polygonal mires located on the southern Taymyr Peninsula and the Lena River delta in northern Siberia. Additionally, n-alkane patterns of six of these species (16 samples) were investigated. The aim of the study is to see whether the inter-and intraspecific differences in C / N, isotopic compositions and n-alkanes are indicative of habitat, particularly with respect to water level. Overall, we find high variability in all investigated parameters for two different moisture-related groups of moss species. The C / N ratios range between 11 and 53 (median: 32) and show large variations at the intraspecific level. However, species preferring a dry habitat (xero-mesophilic mosses) show higher C / N ratios than those preferring a wet habitat (meso-hygrophilic mosses). The delta C-13 values range between 37.0 and 22.5\% (median D 27.8 \%). The delta N-15 values range between 6.6 and C 1.7\%(median D 2.2 \%). We find differences in delta C-13 and delta N-15 compositions between both habitat types. For some species of the meso-hygrophilic group, we suggest that a relationship between the individ-ual habitat water level and isotopic composition can be inferred as a function of microbial symbiosis. The n-alkane distribution also shows differences primarily between xeromesophilic and meso-hygrophilic mosses, i. e. having a dominance of n-alkanes with long (n-C29, n-C31 /and intermediate (n-C25 /chain lengths, respectively. Overall, our results reveal that C / N ratios, isotopic signals and n-alkanes of studied brown-moss taxa from polygonal wetlands are characteristic of their habitat.}, language = {en} } @misc{ZibulskiWesenerWilkesetal.2017, author = {Zibulski, Romy and Wesener, Felix and Wilkes, Heinz and Plessen, Birgit and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {C / N ratio, stable isotope (δ 13 C, δ 15 N), and n-alkane patterns of brown mosses along hydrological gradients of low-centred polygons of the Siberian Arctic}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {672}, issn = {1866-8372}, doi = {10.25932/publishup-41710}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417104}, pages = {14}, year = {2017}, abstract = {Mosses are a major component of the arctic vegetation, particularly in wetlands. We present C / N atomic ratio, delta C-13 and delta N-15 data of 400 brown-moss samples belonging to 10 species that were collected along hydrological gradients within polygonal mires located on the southern Taymyr Peninsula and the Lena River delta in northern Siberia. Additionally, n-alkane patterns of six of these species (16 samples) were investigated. The aim of the study is to see whether the inter-and intraspecific differences in C / N, isotopic compositions and n-alkanes are indicative of habitat, particularly with respect to water level. Overall, we find high variability in all investigated parameters for two different moisture-related groups of moss species. The C / N ratios range between 11 and 53 (median: 32) and show large variations at the intraspecific level. However, species preferring a dry habitat (xero-mesophilic mosses) show higher C / N ratios than those preferring a wet habitat (meso-hygrophilic mosses). The delta C-13 values range between 37.0 and 22.5\% (median D 27.8 \%). The delta N-15 values range between 6.6 and C 1.7\%(median D 2.2 \%). We find differences in delta C-13 and delta N-15 compositions between both habitat types. For some species of the meso-hygrophilic group, we suggest that a relationship between the individ-ual habitat water level and isotopic composition can be inferred as a function of microbial symbiosis. The n-alkane distribution also shows differences primarily between xeromesophilic and meso-hygrophilic mosses, i. e. having a dominance of n-alkanes with long (n-C29, n-C31 /and intermediate (n-C25 /chain lengths, respectively. Overall, our results reveal that C / N ratios, isotopic signals and n-alkanes of studied brown-moss taxa from polygonal wetlands are characteristic of their habitat.}, language = {en} } @article{FohlmeisterArpsSpoetletal.2018, author = {Fohlmeister, Jens Bernd and Arps, Jennifer and Spoetl, Christoph and Schroeder-Ritzrau, Andrea and Plessen, Birgit and G{\"u}nter, Christina and Frank, Norbert and Tr{\"u}ssel, Martin}, title = {Carbon and oxygen isotope fractionation in the water-calcite-aragonite system}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {235}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2018.05.022}, pages = {127 -- 139}, year = {2018}, abstract = {The precise determination of the stable C and O isotope fractionation between water and calcite (CC) and water and aragonite (AR) is of special interest for climate reconstructions, e.g. paleotemperatures. Previous studies reported results from both laboratory and field experiments, but their results are only partly consistent. Here we present C and O isotope data of a stalagmite from the Swiss Alps, which shows CC-AR transitions along individual growth layers. Using detailed analyses both laterally and perpendicular to such layers we examined the difference in the C and O isotope fractionation factor of the HCO3- - CC and the HCO3- - AR system. For O this difference is similar to the water-CC and water-AR offset provided in experimental studies. The O isotope fractionation difference in the water-CC and water-AR system is comparable to those determined in laboratory studies but shows a statistically significant correlation with the CaCO3 precipitation rate. For C we found a fractionation difference, which is independent of CaCO3 precipitation rate and with slightly smaller values for the fractionation offset between HCO3- - CC and HCO3- - AR compared to literature values. However, we also found an unexpected decrease in delta C-13 along growth layers, which contradicts the widely used concept of Rayleigh fractionation during CO2 degassing and CaCO3 precipitation. The results of this study can be used e.g., to correct stable isotope time series of stalagmites showing CC-AR transitions along their growth axes. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @article{MishraPrasadAnoopetal.2015, author = {Mishra, Praveen Kumar and Prasad, Sushma and Anoop, A. and Plessen, Birgit and Jehangir, Arshid and Gaye, Birgit and Menzel, Philip and Weise, Stephan M. and Yousuf, Abdul R.}, title = {Carbonate isotopes from high altitude Tso Moriri Lake (NW Himalayas) provide clues to late glacial and Holocene moisture source and atmospheric circulation changes}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {425}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2015.02.031}, pages = {76 -- 83}, year = {2015}, abstract = {High resolution isotopic (delta O-18 and delta C-13) investigations on endogenic carbonates (calcite/aragonite) from Tso Moriri Lake, NW Himalaya show dramatic fluctuations during the late glacial and the early Holocene, and a persistent enrichment trend during the late Holocene. Changes in this lake are largely governed by the [input (meltwater + monsoon precipitation)/evaporationj (WE) ratio, also reflected in changes in the carbonate mineralogy with aragonite being formed during periods of lowest I/E. Using new isotopic data on endogenic carbonates in combination with the available data on geochemistry, mineralogy, and reconstructed mean annual precipitation, we demonstrate that the late glacial and early Holocene carbonate delta O-18 variability resulted from fluctuating Indian summer monsoon (ISM) precipitation in NW Himalaya. This region experienced increasing ISM precipitation between ca. 13.1 and 11.7 cal ka and highest ISM precipitation during the early Holocene (11.2-8.5 cal ka). However, during the late Holocene, evaporation was the dominant control on the carbonate delta O-18. Regional comparison of reconstructed hydrological changes from Tso Moriri Lake with other archives from the Asian summer monsoon and westerlies domain shows that the intensified westerly influence that resulted in higher lake levels (after 8 cal ka) in central Asia was not strongly felt in NW Himalaya. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{LechleitnerBreitenbachChengetal.2017, author = {Lechleitner, Franziska A. and Breitenbach, Sebastian Franz Martin and Cheng, Hai and Plessen, Birgit and Rehfeld, Kira and Goswami, Bedartha and Marwan, Norbert and Eroglu, Deniz and Adkins, Jess F. and Haug, Gerald}, title = {Climatic and in-cave influences on delta O-18 and delta C-13 in a stalagmite from northeastern India through the last deglaciation}, series = {Quaternary research : an interdisciplinary journal}, volume = {88}, journal = {Quaternary research : an interdisciplinary journal}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0033-5894}, doi = {10.1017/qua.2017.72}, pages = {458 -- 471}, year = {2017}, abstract = {Northeastern (NE) India experiences extraordinarily pronounced seasonal climate, governed by the Indian summer monsoon (ISM). The vulnerability of this region to floods and droughts calls for detailed and highly resolved paleoclimate reconstructions to assess the recurrence rate and driving factors of ISM changes. We use stable oxygen and carbon isotope ratios (delta O-18 and delta C-13) from stalagmite MAW-6 from Mawmluh Cave to infer climate and environmental conditions in NE India over the last deglaciation (16-6ka). We interpret stalagmite delta O-18 as reflecting ISM strength, whereas delta C-13 appears to be driven by local hydroclimate conditions. Pronounced shifts in ISM strength over the deglaciation are apparent from the delta O-18 record, similarly to other records from monsoonal Asia. The ISM is weaker during the late glacial (LG) period and the Younger Dryas, and stronger during the BOlling-Allerod and Holocene. Local conditions inferred from the delta C-13 record appear to have changed less substantially over time, possibly related to the masking effect of changing precipitation seasonality. Time series analysis of the delta O-18 record reveals more chaotic conditions during the late glacial and higher predictability during the Holocene, likely related to the strengthening of the seasonal recurrence of the ISM with the onset of the Holocene.}, language = {en} } @article{HeineckeMischkeAdleretal.2017, author = {Heinecke, Liv and Mischke, Steffen and Adler, Karsten and Barth, Anja and Biskaborn, Boris K. and Plessen, Birgit and Nitze, Ingmar and Kuhn, Gerhard and Rajabov, Ilhomjon and Herzschuh, Ulrike}, title = {Climatic and limnological changes at Lake Karakul (Tajikistan) during the last similar to 29 cal ka}, series = {Journal of paleolimnolog}, volume = {58}, journal = {Journal of paleolimnolog}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-017-9980-0}, pages = {317 -- 334}, year = {2017}, abstract = {We present results of analyses on a sediment core from Lake Karakul, located in the eastern Pamir Mountains, Tajikistan. The core spans the last similar to 29 cal ka. We investigated and assessed processes internal and external to the lake to infer changes in past moisture availability. Among the variables used to infer lake-external processes, high values of grain-size end-member (EM) 3 (wide grain-size distribution that reflects fluvial input) and high Sr/Rb and Zr/Rb ratios (coinciding with coarse grain sizes), are indicative of moister conditions. High values in EM1, EM2 (peaks of small grain sizes that reflect long-distance dust transport or fine, glacially derived clastic input) and TiO2 (terrigenous input) are thought to reflect greater influence of dry air masses, most likely of Westerly origin. High input of dust from distant sources, beginning before the Last Glacial Maximum (LGM) and continuing to the late glacial, reflects the influence of dry Westerlies, whereas peaks in fluvial input suggest increased moisture availability. The early to early-middle Holocene is characterised by coarse mean grain sizes, indicating constant, high fluvial input and moister conditions in the region. A steady increase in terrigenous dust and a decrease in fluvial input from 6.6 cal ka BP onwards points to the Westerlies as the predominant atmospheric circulation through to present, and marks a return to drier and even arid conditions in the area. Proxies for productivity (TOC, TOC/TN, TOCBr), redox potential (Fe/Mn) and changes in the endogenic carbonate precipitation (TIC, delta(18) OCarb) indicate changes within the lake. Low productivity characterised the lake from the late Pleistocene until 6.6 cal ka BP, and increased rapidly afterwards. Lake level remained low until the LGM, but water depth increased to a maximum during the late glacial and remained high into the early Holocene. Subsequently, the water level decreased to its present stage. Today the lake system is mainly climatically controlled, but the depositional regime is also driven by internal limnogeological processes.}, language = {en} } @article{LauterbachWittPlessenetal.2014, author = {Lauterbach, Stefan and Witt, Roman and Plessen, Birgit and Dulski, Peter and Prasad, Sushma and Mingram, Jens and Gleixner, Gerd and Hettler-Riedel, Sabine and Stebich, Martina and Schnetger, Bernhard and Schwalb, Antje and Schwarz, Anja}, title = {Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years}, series = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, volume = {24}, journal = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, number = {8}, publisher = {Sage Publ.}, address = {London}, issn = {0959-6836}, doi = {10.1177/0959683614534741}, pages = {970 -- 984}, year = {2014}, abstract = {In general, a moderate drying trend is observed in mid-latitude arid Central Asia since the Mid-Holocene, attributed to the progressively weakening influence of the mid-latitude Westerlies on regional climate. However, as the spatio-temporal pattern of this development and the underlying climatic mechanisms are yet not fully understood, new high-resolution paleoclimate records from this region are needed. Within this study, a sediment core from Lake Son Kol (Central Kyrgyzstan) was investigated using sedimentological, (bio) geochemical, isotopic, and palynological analyses, aiming at reconstructing regional climate development during the last 6000 years. Biogeochemical data, mainly reflecting summer moisture conditions, indicate predominantly wet conditions until 4950 cal. yr BP, succeeded by a pronounced dry interval between 4950 and 3900 cal. yr BP. In the following, a return to wet conditions and a subsequent moderate drying trend until present times are observed. This is consistent with other regional paleoclimate records and likely reflects the gradual Late Holocene diminishment of the amount of summer moisture provided by the mid-latitude Westerlies. However, climate impact of the Westerlies was apparently not only restricted to the summer season but also significant during winter as indicated by recurrent episodes of enhanced allochthonous input through snowmelt, occurring before 6000 cal. yr BP and at 5100-4350, 3450-2850, and 1900-1500 cal. yr BP. The distinct similar to 1500year periodicity of these episodes of increased winter precipitation in Central Kyrgyzstan resembles similar cyclicities observed in paleoclimate records around the North Atlantic, likely indicating a hemispheric-scale climatic teleconnection and an impact of North Atlantic Oscillation (NAO) variability in Central Asia.}, language = {en} } @misc{LauterbachWittPlessenetal.2017, author = {Lauterbach, Stefan and Witt, Roman and Plessen, Birgit and Dulski, Peter and Prasad, Sushma and Mingram, Jens and Gleixner, Gerd and Hettler-Riedel, Sabine and Stebich, Martina and Schnetger, Bernhard and Schwalb, Antje and Schwarz, Anja}, title = {Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404085}, pages = {15}, year = {2017}, abstract = {In general, a moderate drying trend is observed in mid-latitude arid Central Asia since the Mid-Holocene, attributed to the progressively weakening influence of the mid-latitude Westerlies on regional climate. However, as the spatio-temporal pattern of this development and the underlying climatic mechanisms are yet not fully understood, new high-resolution paleoclimate records from this region are needed. Within this study, a sediment core from Lake Son Kol (Central Kyrgyzstan) was investigated using sedimentological, (bio) geochemical, isotopic, and palynological analyses, aiming at reconstructing regional climate development during the last 6000 years. Biogeochemical data, mainly reflecting summer moisture conditions, indicate predominantly wet conditions until 4950 cal. yr BP, succeeded by a pronounced dry interval between 4950 and 3900 cal. yr BP. In the following, a return to wet conditions and a subsequent moderate drying trend until present times are observed. This is consistent with other regional paleoclimate records and likely reflects the gradual Late Holocene diminishment of the amount of summer moisture provided by the mid-latitude Westerlies. However, climate impact of the Westerlies was apparently not only restricted to the summer season but also significant during winter as indicated by recurrent episodes of enhanced allochthonous input through snowmelt, occurring before 6000 cal. yr BP and at 5100-4350, 3450-2850, and 1900-1500 cal. yr BP. The distinct similar to 1500year periodicity of these episodes of increased winter precipitation in Central Kyrgyzstan resembles similar cyclicities observed in paleoclimate records around the North Atlantic, likely indicating a hemispheric-scale climatic teleconnection and an impact of North Atlantic Oscillation (NAO) variability in Central Asia.}, language = {en} }