@article{PietschBodenthinMoehwaldetal.2005, author = {Pietsch, Ullrich and Bodenthin, Yves and M{\"o}hwald, Helmuth and Kurth, Dirk G.}, title = {Inducing spin crossover in metallo-supramolecular polyelectrolytes through an amphiphilic phase transition}, year = {2005}, abstract = {A phase transition in an amphiphilic mesophase is explored to deliberately induce mechanical strain in an assembly of tightly coupled metal ion coordination centers. Melting of the alkyl chains in the amphiphilic mesophase causes distortion of the coordination geometry around the central transition metal ion. As a result, the crystal field splitting of the d-orbital subsets decreases resulting in a spin transition from a low-spin to a high-spin state. The diamagnetic-paramagnetic transition is reversible. This concept is demonstrated in a metallo-supramolecular coordination polyelectrolyte-amphiphile complex self-assembled from ditopic bis-terpyridines, Fe(II) as central transition metal, and dialkyl phosphates as amphiphiles. The magnetic properties are studied in a Langmuir-Blodgett multilayer. The modularity of this concept provides extensive control of structure and function from molecular to macroscopic length scales and gives access to a wide range of new molecular magnetic architectures such as nanostructures, thin films, and liquid crystals}, language = {en} } @article{LisdatDronovMoehwaldetal.2009, author = {Lisdat, Fred and Dronov, Roman and M{\"o}hwald, Helmuth and Scheller, Frieder W. and Kurth, Dirk G.}, title = {Self-assembly of electro-active protein architectures on electrodes for the construction of biomimetic signal chains}, issn = {1359-7345}, doi = {10.1039/B813559b}, year = {2009}, abstract = {The layer-by-layer adsorption technique based on the consecutive deposition of oppositely charged species is for the preparation of protein multilayers with fully electro-active protein molecules. The methodology was established with cytochrome c and the polyelectrolyte sulfonated polyaniline (PASA). The technique is also useful for the construction of bi-protein architectures confining protein-protein communication to an electrode. Following natural examples of protein complexes with defined signal transfer, cytochrome c was arranged with enzymes such as xanthine oxidase, bilirubin oxidase, laccase, and sulfite oxidase in self-assembled multilayer architectures. Thus, biomimetic signal chains from the enzyme substrate via the enzyme and cytochrome c towards the electrode can be established. Communication between proteins immobilised in multiple layers on the electrode can be achieved by in situ generation of small shuttle molecules or more advantageously by direct interprotein electron transfer. This allows the construction of new sensing electrodes, the properties of which can be tuned by the number of deposited protein layers. The mechanism of electron transfer within such protein assemblies on gold electrodes will be discussed.}, language = {en} } @phdthesis{Kurth2002, author = {Kurth, Dirk G.}, title = {Self-assembly of hierachically structured architectures of metallo-supramolecular modules}, pages = {179 S.}, year = {2002}, language = {en} } @article{SchwarzBodenthinGeueetal.2010, author = {Schwarz, Guntram and Bodenthin, Yves and Geue, Thomas and Koetz, Joachim and Kurth, Dirk G.}, title = {Structure and properties of dynamic rigid rod-like metallo-supramolecular polyelectrolytes in solution}, issn = {0024-9297}, doi = {10.1021/Ma902057f}, year = {2010}, abstract = {Metal-ion-induced self-assembly in aqueous solution of the rigid ligand 1,4-bis(2,2':6',2 ''-terpyridine-4'-yl)benzene (1) with Fe(OAc)(2) and Ni(OAc)(2) is investigated with viscosimetry, SANS, and AFM. Ligand 1 forms extended, rigid-rod like metallo-supramolecular coordination polyeectrolytes (MEPEs) with a molar mass of up to 200 000 g mol(-1) under the Current experimental conditions. The molar mass depends oil concentration, stoichiometry, and time. By spin-coating MEPEs oil a solid surface, we call image the MEPEs in real space by AFM. Both AFM and SANS confirm the extended rigid-rod-type structure of the MEPEs. As a control experiment, we also studied the flexible ligand 1,3-bis[4'-oxa(2,2':6',2 ''-terpyridinyl)]propane (2). Ligand 2 does not form extended macro-assemblies but likely ringlike structures with three 10 four repeat units. Finally, we present it protocol to control the stoichiometry during self-assembly using conductometry, which is of paramount importance to obtain meaningful and reproducible results.}, language = {en} } @article{PietschBodenthinGrenzeretal.2005, author = {Pietsch, Ullrich and Bodenthin, Yves and Grenzer, J{\"o}rg and Geue, Thomas and M{\"o}hwald, Helmuth and Kurth, Dirk G.}, title = {Structure and temperature behavior of metallo-supramolecular assemblies}, year = {2005}, abstract = {A detailed structural analysis of a Langmuir-Blodgett (LB) multilayer composed of a polyelectrolyte-amphiphile complex (PAC) is presented. The PAC is self-assembled from metal ions, ditopic bis-terpyridines, and amphiphiles. The vertical structure of the LB multilayer is investigated by X-ray reflectometry. The multilayer has a periodicity of 57 A, which corresponds to an architecture of flat lying metallo-supramolecular coordination polyelectrolyte (MEPE) rods and upright-standing amphiphiles (dihexadecyl phosphate, DHP). In-plane diffraction reveals hexagonal packing of the DHP molecules. Using extended X-ray absorption fine structure (EXAFS) experiments, we prove that the central metal ion is coordinated to the terpyridine moieties in a pseudo-octahedral coordination environment. The Fe-N bond distances are 1.82 and 2.0 angstrom, respectively. Temperature resolved measurements indicate a reversible phase transition in a temperature range up to 55 degrees C. EXAFS measurements indicate a lengthening of the average Fe-N bond distance from 1.91 to 1.95 angstrom. The widening of the coordination cage upon heating is expected to lower the ligand field stabilization, thus giving rise to spin transitions in these composite materials}, language = {en} } @article{BodenthinGrenzerLauteretal.2002, author = {Bodenthin, Yves and Grenzer, J{\"o}rg and Lauter, Robert and Pietsch, Ullrich and Lehmann, Pit and Kurth, Dirk G. and M{\"o}hwald, Helmuth}, title = {Temperature and time resolved x-ray scattering at thin organic films}, year = {2002}, language = {en} } @article{SchwarzSieversBodenthinetal.2010, author = {Schwarz, Guntram and Sievers, Torsten K. and Bodenthin, Yves and Hasslauer, Ires and Geue, Thomas and Koetz, Joachim and Kurth, Dirk G.}, title = {The structure of metallo-supramolecular polyelectrolytes in solution and on surfaces}, issn = {0959-9428}, doi = {10.1039/B926783b}, year = {2010}, abstract = {Metal ion induced self-assembly of the rigid ligand 1,4-bis(2,2':6',2 ''-terpyridine- 4'-yl) benzene (1) with Fe(II), Co(II), Ni(II) and Zn(II) acetate in aqueous solution results in extended, rigid- rod like metallosupramolecular coordination polyelectrolytes (MEPE-1). Under the current experimental conditions the molar masses range from 1000 g mol(-1) up to 500 000 g mol(-1). The molar mass depends on concentration, stoichiometry, metal-ion and time. In addition, we present viscosity measurements, small angle neutron scattering and AFM data. We introduce a protocol to precisely control the stoichiometry during self-assembly using conductometry. The protocol can be used with different terpyridine ligands and the above-mentioned metal ions and is of paramount importance to obtain meaningful and reproducible results. As a control experiment we studied the mononuclear 4'- (phenyl)2,2':6',2 ''-terpyridine (3) complex with Ni(II) and Zn(II) and the flexible ligand 1,3- bis[4'-oxa(2,2': 6',2 ''-terpyridinyl)] propane (2) with Ni(II) acetate (Ni-MEPE-2). This ligand does not form extended macroassemblies but likely ring-like structures with 3 to 4 repeat units. Through spin- coating of Ni-MEPE-1 on a solid surface we can image the MEPEs in real space by AFM. SANS measurements of Fe-MEPE-1 verify the extended rigid-rod type structure of the MEPEs in aqueous solution.}, language = {en} }