@misc{Haakh2009, type = {Master Thesis}, author = {Haakh, Harald Richard}, title = {Cavity QED with superconductors and its application to the Casimir effect}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-32564}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Diese Diplomarbeit untersucht den Casimir-Effekt zwischen normal- und supraleitenden Platten {\"u}ber einen weiten Temperaturbereich, sowie die Casimir-Polder-Wechselwirkung zwischen einem Atom und einer solchen Oberfl{\"a}che. Hierzu wurden vorwiegend numerische und asymptotische Rechnungen durchgef{\"u}hrt. Die optischen Eigenschaften der Oberfl{\"a}chen werden dann aus dielektrischen Funktionen oder optischen Leitf{\"a}higkeiten erhalten. Wichtige Modellen werden vorgestellt und insbesondere im Hinblick auf ihre analytischen und kausalen Eigenschaften untersucht. Es wird vorgestellt, wie sich die Casimir-Energie zwischen zwei normalleitenden Platten berechnen l{\"a}sst. Fr{\"u}here Arbeiten {\"u}ber den in allen metallischen Kavit{\"a}ten vorhandenen Beitrag von Oberfl{\"a}chenplasmonen zur Casimir-Wechselwirkung wurden zum ersten mal auf endliche Temperaturen erweitert. F{\"u}r Supraleiter wird eine analytische Fortsetzung der BCS-Leitf{\"a}higkeiten zu rein imagin{\"a}ren Frequenzen, sowohl innerhalb wie außerhalb des schmutzigen Grenzfalles verschwindender mittlerer freier Wegl{\"a}nge vorgestellt. Es wird gezeigt, dass die aus dieser neuen Beschreibung erhaltene freie Casimir-Energie in bestimmten Bereichen der Materialparameter hervorragend mit der im Rahmen des Zwei-Fluid-Modells f{\"u}r den Supraleiter berechneten {\"u}bereinstimmt. Die Casimir-Entropie einer supraleitenden Kavit{\"a}t erf{\"u}llt den Nernstschen W{\"a}rmesatz und weist einen charakteristischen Sprung beim Erreichen des supraleitenden Phasen{\"u}bergangs auf. Diese Effekte treten ebenfalls in der magnetischen Casimir-Polder-Wechselwirkung eines Atoms mit einer supraleitenden Oberfl{\"a}che auf. Es wird ferner gezeigt, dass die magnetische Dipol-Wechselwirkung eines Atomes mit einem Metall sehr stark von den dissipativen Eigenschaften und insbesondere von den Oberfl{\"a}chenstr{\"o}men abh{\"a}ngt. Dies f{\"u}hrt zu einer starken Unterdr{\"u}ckung der magnetischen Casimir-Polder-Energie bei endlichen Temperaturen und Abst{\"a}nden oberhalb der thermischen Wellenl{\"a}nge. Die Casimir-Polder-Entropie verletzt in einigen Modellen den Nernstschen W{\"a}rmesatz.{\"A}hnliche Effekte werden f{\"u}r den Casimir-Effekt zwischen Platten kontrovers diskutiert. In den entsprechenden elektrischen Dipol-Wechselwirkungen tritt keiner dieser Effekte auf. Die Ergebnisse dieser Arbeit legen nahe, das bekannte Plasma-Modells als Grenzfall eines Supraleiters bei niedrigen Temperaturen (bekannt als London-Theorie) zu betrachten, statt als Beschreibung eines normales Metalles. Supraleiter bieten die M{\"o}glichkeit, die Dissipation der Oberfl{\"a}chenstr{\"o}me in hohem Maße zu steuern. Dies k{\"o}nnte einen experimentellen Zugang zu den optischen Eigenschaften von Metallen bei niedrigen Frequenzen erlauben, die eng mit dem thermischen Casimir-Effekt verkn{\"u}pft sind. Anders als in entsprechenden Mikrowellen-Experimenten sind hierbei die Energien und Impulse unabh{\"a}ngige Gr{\"o}ßen. Die Messung der Oberfl{\"a}chenwechselwirkung zwischen Atomen und Supraleitern ist mit den heute verf{\"u}gbaren Atomfallen auf Mikrochips m{\"o}glich und der magnetische Anteil der Wechselwirkung sollte spektroskopischen Techniken zug{\"a}nglich sein}, language = {en} }