@article{ZhelavskayaShpritsSpasojevic2017, author = {Zhelavskaya, Irina and Shprits, Yuri Y. and Spasojevic, Maria}, title = {Empirical Modeling of the Plasmasphere Dynamics Using Neural Networks}, series = {Journal of geophysical research : Space physics}, volume = {122}, journal = {Journal of geophysical research : Space physics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1002/2017JA024406}, pages = {11227 -- 11244}, year = {2017}, abstract = {We present the PINE (Plasma density in the Inner magnetosphere Neural network\&\#8208;based Empirical) model \&\#8208; a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural\&\#8208;network\&\#8208;based Upper hybrid Resonance Determination) algorithm for the period of 1 October 2012 to 1 July 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2\&\#8804;L\&\#8804;6 and all local times. We validate and test the model by measuring its performance on independent data sets withheld from the training set and by comparing the model\&\#8208;predicted global evolution with global images of He+ distribution in the Earth's plasmasphere from the IMAGE Extreme UltraViolet (EUV) instrument. We identify the parameters that best quantify the plasmasphere dynamics by training and comparing multiple neural networks with different combinations of input parameters (geomagnetic indices, solar wind data, and different durations of their time history). The optimal model is based on the 96\&\#8201;h time history of Kp, AE, SYM\&\#8208;H, and F10.7 indices. The model successfully reproduces erosion of the plasmasphere on the nightside and plume formation and evolution. We demonstrate results of both local and global plasma density reconstruction. This study illustrates how global dynamics can be reconstructed from local in situ observations by using machine learning techniques.}, language = {en} } @article{ZhangPikovskijLiu2017, author = {Zhang, Xiyun and Pikovskij, Arkadij and Liu, Zonghua}, title = {Dynamics of oscillators globally coupled via two mean fields}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-02283-1}, pages = {16}, year = {2017}, abstract = {Many studies of synchronization properties of coupled oscillators, based on the classical Kuramoto approach, focus on ensembles coupled via a mean field. Here we introduce a setup of Kuramoto-type phase oscillators coupled via two mean fields. We derive stability properties of the incoherent state and find traveling wave solutions with different locking patterns; stability properties of these waves are found numerically. Mostly nontrivial states appear when the two fields compete, i.e. one tends to synchronize oscillators while the other one desynchronizes them. Here we identify normal branches which bifurcate from the incoherent state in a usual way, and anomalous branches, appearance of which cannot be described as a bifurcation. Furthermore, hybrid branches combining properties of both are described. In the situations where no stable traveling wave exists, modulated quasiperiodic in time dynamics is observed. Our results indicate that a competition between two coupling channels can lead to a complex system behavior, providing a potential generalized framework for understanding of complex phenomena in natural oscillatory systems.}, language = {en} } @article{ZhangWillaSunetal.2017, author = {Zhang, Weiyi and Willa, Christoph and Sun, Jian-Ke and Guterman, Ryan and Taubert, Andreas and Yuan, Jiayin}, title = {Polytriazolium poly(ionic liquid) bearing triiodide anions: Synthesis, basic properties and electrochemical behaviors}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {124}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2017.07.059}, pages = {246 -- 251}, year = {2017}, abstract = {4-Methyl-1-vinyl-1,2,4-triazolium triiodide ionic liquid and its polymer poly(4-methyl-1-vinyl-1,2,4-triazolium) triiodide were prepared for the first time from their iodide precursors via the reaction of iodide (I-) with elemental iodine (I-2). The change from iodide to triiodide (I-3(-)) was found to introduce particular variations in the physical properties of these two compounds, including lower melting point/glass transition temperature and altered solubility. The compounds were characterized by single-crystal X-ray diffraction, elemental analysis, and their electrochemical properties examined in solution and in the solid-state. Compared with their iodide analogues, the triiodide salts exhibited lower electrical impedance and higher current in the cyclic voltammetry. We found that poly(4-methyl-1,2,4-triazolium triiodide) was proven to be a promising solid polymer electrolyte candidate. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ZhangBisterfeldBramskietal.2017, author = {Zhang, Shuhao and Bisterfeld, Carolin and Bramski, Julia and Vanparijs, Nane and De Geest, Bruno G. and Pietruszka, J{\"o}rg and B{\"o}ker, Alexander and Reinicke, Stefan}, title = {Biocatalytically Active Thin Films via Self-Assembly of 2-Deoxy-D-ribose-5-phosphate Aldolase-Poly(N-isopropylacrylamide) Conjugates}, series = {Bioconjugate chemistry}, volume = {29}, journal = {Bioconjugate chemistry}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1043-1802}, doi = {10.1021/acs.bioconjchem.7b00645}, pages = {104 -- 116}, year = {2017}, abstract = {2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a biocatalyst that is capable of converting acetaldehyde and a second aldehyde as acceptor into enantiomerically pure mono- and diyhydroxyaldehydes, which are important structural motifs in a number of pharmaceutically active compounds. However, substrate as well as product inhibition requires a more-sophisticated process design for the synthesis of these motifs. One way to do so is to the couple aldehyde conversion with transport processes, which, in turn, would require an immobilization of the enzyme within a thin film that can be deposited on a membrane support. Consequently, we developed a fabrication process for such films that is based on the formation of DERA-poly(N-isopropylacrylamide) conjugates that are subsequently allowed to self-assemble at an air-water interface to yield the respective film. In this contribution, we discuss the conjugation conditions, investigate the interfacial properties of the conjugates, and, finally, demonstrate a successful film formation under the preservation of enzymatic activity.}, language = {en} } @article{ZhangSaidWischkeetal.2017, author = {Zhang, Nan and Said, Andre and Wischke, Christian and Kral, Vivian and Brodwolf, Robert and Volz, Pierre and Boreham, Alexander and Gerecke, Christian and Li, Wenzhong and Neffe, Axel T. and Kleuser, Burkhard and Alexiev, Ulrike and Lendlein, Andreas and Sch{\"a}fer-Korting, Monika}, title = {Poly[acrylonitrile-co-(N-vinyl pyrrolidone)] nanoparticles - Composition-dependent skin penetration enhancement of a dye probe and biocompatibility}, series = {European Journal of Pharmaceutics and Biopharmaceutics}, volume = {116}, journal = {European Journal of Pharmaceutics and Biopharmaceutics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0939-6411}, doi = {10.1016/j.ejpb.2016.10.019}, pages = {66 -- 75}, year = {2017}, abstract = {Nanoparticles can improve topical drug delivery: size, surface properties and flexibility of polymer nanoparticles are defining its interaction with the skin. Only few studies have explored skin penetration for one series of structurally related polymer particles with systematic alteration of material composition. Here, a series of rigid poly[acrylonitrile-co-(N-vinyl pyrrolidone)] model nanoparticles stably loaded with Nile Red or Rhodamin B, respectively, was comprehensively studied for biocompatibility and functionality. Surface properties were altered by varying the molar content of hydrophilic NVP from 0 to 24.1\% and particle size ranged from 35 to 244 nm. Whereas irritancy and genotoxicity were not revealed, lipophilic and hydrophilic nanoparticles taken up by keratinocytes affected cell viability. Skin absorption of the particles into viable skin ex vivo was studied using Nile Red as fluorescent probe. Whilst an intact stratum corneum efficiently prevented penetration, almost complete removal of the horny layer allowed nanoparticles of smaller size and hydrophilic particles to penetrate into viable epidermis and dermis. Hence, systematic variations of nanoparticle properties allows gaining insights into critical criteria for biocompatibility and functionality of novel nanocarriers for topical drug delivery and risks associated with environmental exposure.}, language = {en} } @article{ZhangChenArminetal.2017, author = {Zhang, Kai and Chen, Zhiming and Armin, Ardalan and Dong, Sheng and Xia, Ruoxi and Yip, Hin-Lap and Shoaee, Safa and Huang, Fei and Cao, Yong}, title = {Efficient large area organic solar cells processed by blade-coating with single-component green solvent}, series = {Solar Rrl}, volume = {2}, journal = {Solar Rrl}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.201700169}, pages = {9}, year = {2017}, abstract = {While the performance of laboratory-scale organic solar cells (OSCs) continues to grow, development of high efficiency large area OSCs remains a big challenge. Although a few attempts to produce large area organic solar cells (OSCs) have been reported, there are still challenges on the way to realizing efficient module devices, such as the low compatibility of the thickness-sensitive active layer with large area coating techniques, the frequent need for toxic solvents and tedious optimization processes used during device fabrication. In this work, highly efficient thickness-insensitive OSCs based on PTB7-Th:PC71BM that processed with single-component green solvent 2-methylanisole are presented, in which both junction thickness limitation and solvent toxicity issues are simultaneously addressed. Careful investigation reveals that this green solvent prevents the evolution of PC71BM into large area clusters resulting in reduced charge carrier recombination, and largely eliminates trapping centers, and thus improves the thickness tolerance of the films. These findings enable us to address the scalability and solvent toxicity issues and to fabricate a 16 cm(2) OSC with doctor-blade coating with a state-of-the-art power conversion efficiency of 7.5\% using green solvent.}, language = {en} } @article{ZengLeimkuehlerWollenbergeretal.2017, author = {Zeng, Ting and Leimk{\"u}hler, Silke and Wollenberger, Ulla and Fourmond, Vincent}, title = {Transient Catalytic Voltammetry of Sulfite Oxidase Reveals Rate Limiting Conformational Changes}, series = {Journal of the American Chemical Society}, volume = {139}, journal = {Journal of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/jacs.7b05480}, pages = {11559 -- 11567}, year = {2017}, abstract = {Sulfite oxidases are metalloenzymes that oxidize sulfite to sulfate at a molybdenum active site. In vertebrate sulfite oxidases, the electrons generated at the Mo center are transferred to an external electron acceptor via a heme domain, which can adopt two conformations: a "closed" conformation, suitable for internal electron transfer, and an "open" conformation suitable for intermolecular electron transfer. This conformational change is an integral part of the catalytic cycle. Sulfite oxidases have been wired to electrode surfaces, but their immobilization leads to a significant decrease in their catalytic activity, raising the question of the occurrence of the conformational change when the enzyme is on an electrode. We recorded and quantitatively modeled for the first time the transient response of the catalytic cycle of human sulfite oxidase immobilized on an electrode. We show that conformational changes still occur on the electrode, but at a lower rate than in solution, which is the reason for the decrease in activity of sulfite oxidases upon immobilization.}, language = {en} } @article{Zantke2017, author = {Zantke, Michael}, title = {Bolschewismus von rechts}, series = {WeltTrends : das außenpolitische Journal}, volume = {25}, journal = {WeltTrends : das außenpolitische Journal}, number = {132}, publisher = {WeltTrends}, address = {Potsdam}, isbn = {973-3-945878-67-5}, issn = {0944-8101}, pages = {33 -- 36}, year = {2017}, language = {de} } @article{ZangStephanssonStenbergetal.2017, author = {Zang, Arno and Stephansson, Ove and Stenberg, Leif and Plenkers, Katrin and von Specht, Sebastian and Milkereit, Claus and Schill, Eva and Kwiatek, Grzegorz and Dresen, Georg and Zimmermann, G{\"u}nter and Dahm, Torsten and Weber, Michael}, title = {Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array}, series = {Geophysical journal international}, volume = {208}, journal = {Geophysical journal international}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, pages = {790 -- 813}, year = {2017}, abstract = {In this paper, an underground experiment at the Aspo Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Aspo HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Avro granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with frequent phases of depressurization.}, language = {en} } @article{ZaksPikovskij2017, author = {Zaks, Michael and Pikovskij, Arkadij}, title = {Chimeras and complex cluster states in arrays of spin-torque oscillators}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-04918-9}, pages = {10}, year = {2017}, abstract = {We consider synchronization properties of arrays of spin-torque nano-oscillators coupled via an RC load. We show that while the fully synchronized state of identical oscillators may be locally stable in some parameter range, this synchrony is not globally attracting. Instead, regimes of different levels of compositional complexity are observed. These include chimera states (a part of the array forms a cluster while other units are desynchronized), clustered chimeras (several clusters plus desynchronized oscillators), cluster state (all oscillators form several clusters), and partial synchronization (no clusters but a nonvanishing mean field). Dynamically, these states are also complex, demonstrating irregular and close to quasiperiodic modulation. Remarkably, when heterogeneity of spin-torque oscillators is taken into account, dynamical complexity even increases: close to the onset of a macroscopic mean field, the dynamics of this field is rather irregular.}, language = {en} }