@phdthesis{Hohenbrink2016, author = {Hohenbrink, Tobias Ludwig}, title = {Turning a problem into a solution: heterogeneities in soil hydrology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101485}, school = {Universit{\"a}t Potsdam}, pages = {x, 123}, year = {2016}, abstract = {It is commonly recognized that soil moisture exhibits spatial heterogeneities occurring in a wide range of scales. These heterogeneities are caused by different factors ranging from soil structure at the plot scale to land use at the landscape scale. There is an urgent need for effi-cient approaches to deal with soil moisture heterogeneity at large scales, where manage-ment decisions are usually made. The aim of this dissertation was to test innovative ap-proaches for making efficient use of standard soil hydrological data in order to assess seep-age rates and main controls on observed hydrological behavior, including the role of soil het-erogeneities. As a first step, the applicability of a simplified Buckingham-Darcy method to estimate deep seepage fluxes from point information of soil moisture dynamics was assessed. This was done in a numerical experiment considering a broad range of soil textures and textural het-erogeneities. The method performed well for most soil texture classes. However, in pure sand where seepage fluxes were dominated by heterogeneous flow fields it turned out to be not applicable, because it simply neglects the effect of water flow heterogeneity. In this study a need for new efficient approaches to handle heterogeneities in one-dimensional water flux models was identified. As a further step, an approach to turn the problem of soil moisture heterogeneity into a solu-tion was presented: Principal component analysis was applied to make use of the variability among soil moisture time series for analyzing apparently complex soil hydrological systems. It can be used for identifying the main controls on the hydrological behavior, quantifying their relevance, and describing their particular effects by functional averaged time series. The ap-proach was firstly tested with soil moisture time series simulated for different texture classes in homogeneous and heterogeneous model domains. Afterwards, it was applied to 57 mois-ture time series measured in a multifactorial long term field experiment in Northeast Germa-ny. The dimensionality of both data sets was rather low, because more than 85 \% of the total moisture variance could already be explained by the hydrological input signal and by signal transformation with soil depth. The perspective of signal transformation, i.e. analyzing how hydrological input signals (e.g., rainfall, snow melt) propagate through the vadose zone, turned out to be a valuable supplement to the common mass flux considerations. Neither different textures nor spatial heterogeneities affected the general kind of signal transfor-mation showing that complex spatial structures do not necessarily evoke a complex hydro-logical behavior. In case of the field measured data another 3.6\% of the total variance was unambiguously explained by different cropping systems. Additionally, it was shown that dif-ferent soil tillage practices did not affect the soil moisture dynamics at all. The presented approach does not require a priori assumptions about the nature of physical processes, and it is not restricted to specific scales. Thus, it opens various possibilities to in-corporate the key information from monitoring data sets into the modeling exercise and thereby reduce model uncertainties.}, language = {en} } @phdthesis{Hassler2013, author = {Haßler, Sibylle Kathrin}, title = {Saturated hydraulic conductivity in the humid tropics : sources of variability, implications for monitoring and effects on near-surface hydrological flow paths}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66864}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Large areas in the humid tropics are currently undergoing land-use change. The decrease of tropical rainforest, which is felled for land clearing and timber production, is countered by increasing areas of tree plantations and secondary forests. These changes are known to affect the regional water cycle as a result of plant-specific water demand and by influencing key soil properties which determine hydrological flow paths. One of these key properties sensitive to land-use change is the saturated hydraulic conductivity (Ks) as it governs vertical percolation of water within the soil profile. Low values of Ks in a certain soil depth can form an impeding layer and lead to perched water tables and the development of predominantly lateral flow paths such as overland flow. These processes can induce nutrient redistribution, erosion and soil degradation and thus affect ecosystem services and human livelihoods. Due to its sensitivity to land-use change, Ks is commonly used to assess the associated changes in hydrological flow paths. The objective of this dissertation was to assess the effect of land-use change on hydrological flow paths by analysing Ks as indicator variable. Sources of Ks variability, their implications for Ks monitoring and the relationship between Ks and near-surface hydrological flow paths in the context of land-use change were studied. The research area was located in central Panama, a country widely experiencing the abovementioned changes in land use. Ks is dependent on both static, soil-inherent properties such as particle size and clay mineralogy and dynamic, land use-dependent properties such as organic carbon content. By conducting a pair of studies with one of these influences held constant in each, the importance of static and dynamic properties for Ks was assessed. Applying a space-for-time approach to sample Ks under secondary forests of different age classes on comparable soils, a recovery of Ks from the former pasture use was shown to require more than eight years. The process was limited to the 0-6 cm sampling depth and showed large variability among replicates. A wavelet analysis of a Ks transect crossing different soil map units under comparable land cover, old-growth tropical rainforest, showed large small-scale variability, which was attributed to biotic influences, as well as a possible but non-conclusive influence of soil types. The two results highlight the importance of dynamic, land use-dependent influences on Ks. Monitoring studies can help to quantify land use-induced change of Ks, but there is a variety of sampling designs which differ in efficiency of estimating mean Ks. A comparative study of four designs and their suitability for Ks monitoring is used to give recommendations about designing a Ks monitoring scheme. Quantifying changes in spatial means of Ks for small catchments with a rotational stratified sampling design did not prove to be more efficient than Simple Random Sampling. The lack of large-scale spatial structure prevented benefits of stratification, and large small-scale variability resulting from local biotic processes and artificial effects of destructive sampling caused a lack of temporal consistency in the re-sampling of locations, which is part of the rotational design. The relationship between Ks and near-surface hydrological flow paths is of critical importance when assessing the consequences of land-use change in the humid tropics. The last part of this dissertation aimed at disclosing spatial relationships between Ks and overland flow as influenced by different land cover types. The effects of Ks on overland-flow generation were spatially variable, different between planar plots and incised flowlines and strongly influenced by land-cover characteristics. A simple comparison of Ks values and rainfall intensities was insufficient to describe the observed pattern of overland flow. Likewise, event flow in the stream was apparently not directly related to overland flow response patterns within the catchments. The study emphasises the importance of combining pedological, hydrological, meteorological and botanical measurements to comprehensively understand the land use-driven change in hydrological flow paths. In summary, Ks proved to be a suitable parameter for assessing the influence of land-use change on soils and hydrological processes. The results illustrated the importance of land cover and spatial variability of Ks for decisions on sampling designs and for interpreting overland-flow generation. As relationships between Ks and overland flow were shown to be complex and dependent on land cover, an interdisciplinary approach is required to comprehensively understand the effects of land-use change on soils and near-surface hydrological flow paths in the humid tropics.}, language = {en} }