@misc{BanbaraSohTamuraetal.2013, author = {Banbara, Mutsunori and Soh, Takehide and Tamura, Naoyuki and Inoue, Katsumi and Schaub, Torsten H.}, title = {Answer set programming as a modeling language for course timetabling}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {594}, issn = {1866-8372}, doi = {10.25932/publishup-41546}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415469}, pages = {783 -- 798}, year = {2013}, abstract = {The course timetabling problem can be generally defined as the task of assigning a number of lectures to a limited set of timeslots and rooms, subject to a given set of hard and soft constraints. The modeling language for course timetabling is required to be expressive enough to specify a wide variety of soft constraints and objective functions. Furthermore, the resulting encoding is required to be extensible for capturing new constraints and for switching them between hard and soft, and to be flexible enough to deal with different formulations. In this paper, we propose to make effective use of ASP as a modeling language for course timetabling. We show that our ASP-based approach can naturally satisfy the above requirements, through an ASP encoding of the curriculum-based course timetabling problem proposed in the third track of the second international timetabling competition (ITC-2007). Our encoding is compact and human-readable, since each constraint is individually expressed by either one or two rules. Each hard constraint is expressed by using integrity constraints and aggregates of ASP. Each soft constraint S is expressed by rules in which the head is the form of penalty (S, V, C), and a violation V and its penalty cost C are detected and calculated respectively in the body. We carried out experiments on four different benchmark sets with five different formulations. We succeeded either in improving the bounds or producing the same bounds for many combinations of problem instances and formulations, compared with the previous best known bounds.}, language = {en} } @article{BanbaraSohTamuraetal.2013, author = {Banbara, Mutsunori and Soh, Takehide and Tamura, Naoyuki and Inoue, Katsumi and Schaub, Torsten H.}, title = {Answer set programming as a modeling language for course timetabling}, series = {Theory and practice of logic programming}, volume = {13}, journal = {Theory and practice of logic programming}, number = {2}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068413000495}, pages = {783 -- 798}, year = {2013}, abstract = {The course timetabling problem can be generally defined as the task of assigning a number of lectures to a limited set of timeslots and rooms, subject to a given set of hard and soft constraints. The modeling language for course timetabling is required to be expressive enough to specify a wide variety of soft constraints and objective functions. Furthermore, the resulting encoding is required to be extensible for capturing new constraints and for switching them between hard and soft, and to be flexible enough to deal with different formulations. In this paper, we propose to make effective use of ASP as a modeling language for course timetabling. We show that our ASP-based approach can naturally satisfy the above requirements, through an ASP encoding of the curriculum-based course timetabling problem proposed in the third track of the second international timetabling competition (ITC-2007). Our encoding is compact and human-readable, since each constraint is individually expressed by either one or two rules. Each hard constraint is expressed by using integrity constraints and aggregates of ASP. Each soft constraint S is expressed by rules in which the head is the form of penalty (S, V, C), and a violation V and its penalty cost C are detected and calculated respectively in the body. We carried out experiments on four different benchmark sets with five different formulations. We succeeded either in improving the bounds or producing the same bounds for many combinations of problem instances and formulations, compared with the previous best known bounds.}, language = {en} } @article{DimopoulosGebserLuehneetal.2019, author = {Dimopoulos, Yannis and Gebser, Martin and L{\"u}hne, Patrick and Romero Davila, Javier and Schaub, Torsten H.}, title = {plasp 3}, series = {Theory and practice of logic programming}, volume = {19}, journal = {Theory and practice of logic programming}, number = {3}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068418000583}, pages = {477 -- 504}, year = {2019}, abstract = {We describe the new version of the Planning Domain Definition Language (PDDL)-to-Answer Set Programming (ASP) translator plasp. First, it widens the range of accepted PDDL features. Second, it contains novel planning encodings, some inspired by Satisfiability Testing (SAT) planning and others exploiting ASP features such as well-foundedness. All of them are designed for handling multivalued fluents in order to capture both PDDL as well as SAS planning formats. Third, enabled by multishot ASP solving, it offers advanced planning algorithms also borrowed from SAT planning. As a result, plasp provides us with an ASP-based framework for studying a variety of planning techniques in a uniform setting. Finally, we demonstrate in an empirical analysis that these techniques have a significant impact on the performance of ASP planning.}, language = {en} } @misc{DworschakGrellNikiforovaetal.2008, author = {Dworschak, Steve and Grell, Susanne and Nikiforova, Victoria J. and Schaub, Torsten H. and Selbig, Joachim}, title = {Modeling biological networks by action languages via answer set programming}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {843}, issn = {1866-8372}, doi = {10.25932/publishup-42984}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429846}, pages = {47}, year = {2008}, abstract = {We describe an approach to modeling biological networks by action languages via answer set programming. To this end, we propose an action language for modeling biological networks, building on previous work by Baral et al. We introduce its syntax and semantics along with a translation into answer set programming, an efficient Boolean Constraint Programming Paradigm. Finally, we describe one of its applications, namely, the sulfur starvation response-pathway of the model plant Arabidopsis thaliana and sketch the functionality of our system and its usage.}, language = {en} } @article{EverardoPerezOsorio2020, author = {Everardo P{\´e}rez, Flavio Omar and Osorio, Mauricio}, title = {Towards an answer set programming methodology for constructing programs following a semi-automatic approach}, series = {Electronic notes in theoretical computer science}, volume = {354}, journal = {Electronic notes in theoretical computer science}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {1571-0661}, doi = {10.1016/j.entcs.2020.10.004}, pages = {29 -- 44}, year = {2020}, abstract = {Answer Set Programming (ASP) is a successful rule-based formalism for modeling and solving knowledge-intense combinatorial (optimization) problems. Despite its success in both academic and industry, open challenges like automatic source code optimization, and software engineering remains. This is because a problem encoded into an ASP might not have the desired solving performance compared to an equivalent representation. Motivated by these two challenges, this paper has three main contributions. First, we propose a developing process towards a methodology to implement ASP programs, being faithful to existing methods. Second, we present ASP encodings that serve as the basis from the developing process. Third, we demonstrate the use of ASP to reverse the standard solving process. That is, knowing answer sets in advance, and desired strong equivalent properties, "we" exhaustively reconstruct ASP programs if they exist. This paper was originally motivated by the search of propositional formulas (if they exist) that represent the semantics of a new aggregate operator. Particularly, a parity aggregate. This aggregate comes as an improvement from the already existing parity (xor) constraints from xorro, where lacks expressiveness, even though these constraints fit perfectly for reasoning modes like sampling or model counting. To this end, this extended version covers the fundaments from parity constraints as well as the xorro system. Hence, we delve a little more in the examples and the proposed methodology over parity constraints. Finally, we discuss our results by showing the only representation available, that satisfies different properties from the classical logic xor operator, which is also consistent with the semantics of parity constraints from xorro.}, language = {en} } @misc{Fandinno2019, author = {Fandinno, Jorge}, title = {Founded (auto)epistemic equilibrium logic satisfies epistemic splitting}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1060}, issn = {1866-8372}, doi = {10.25932/publishup-46968}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469685}, pages = {671 -- 687}, year = {2019}, abstract = {In a recent line of research, two familiar concepts from logic programming semantics (unfounded sets and splitting) were extrapolated to the case of epistemic logic programs. The property of epistemic splitting provides a natural and modular way to understand programs without epistemic cycles but, surprisingly, was only fulfilled by Gelfond's original semantics (G91), among the many proposals in the literature. On the other hand, G91 may suffer from a kind of self-supported, unfounded derivations when epistemic cycles come into play. Recently, the absence of these derivations was also formalised as a property of epistemic semantics called foundedness. Moreover, a first semantics proved to satisfy foundedness was also proposed, the so-called Founded Autoepistemic Equilibrium Logic (FAEEL). In this paper, we prove that FAEEL also satisfies the epistemic splitting property something that, together with foundedness, was not fulfilled by any other approach up to date. To prove this result, we provide an alternative characterisation of FAEEL as a combination of G91 with a simpler logic we called Founded Epistemic Equilibrium Logic (FEEL), which is somehow an extrapolation of the stable model semantics to the modal logic S5.}, language = {en} } @article{FandinnoLaferriereRomeroetal.2021, author = {Fandinno, Jorge and Laferriere, Francois and Romero, Javier and Schaub, Torsten H. and Son, Tran Cao}, title = {Planning with incomplete information in quantified answer set programming}, series = {Theory and practice of logic programming}, volume = {21}, journal = {Theory and practice of logic programming}, number = {5}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {1471-0684}, doi = {10.1017/S1471068421000259}, pages = {663 -- 679}, year = {2021}, abstract = {We present a general approach to planning with incomplete information in Answer Set Programming (ASP). More precisely, we consider the problems of conformant and conditional planning with sensing actions and assumptions. We represent planning problems using a simple formalism where logic programs describe the transition function between states, the initial states and the goal states. For solving planning problems, we use Quantified Answer Set Programming (QASP), an extension of ASP with existential and universal quantifiers over atoms that is analogous to Quantified Boolean Formulas (QBFs). We define the language of quantified logic programs and use it to represent the solutions different variants of conformant and conditional planning. On the practical side, we present a translation-based QASP solver that converts quantified logic programs into QBFs and then executes a QBF solver, and we evaluate experimentally the approach on conformant and conditional planning benchmarks.}, language = {en} } @misc{FichteTruszczynskiWoltran2015, author = {Fichte, Johannes Klaus and Truszczynski, Miroslaw and Woltran, Stefan}, title = {Dual-normal logic programs}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {585}, issn = {1866-8372}, doi = {10.25932/publishup-41449}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414490}, pages = {16}, year = {2015}, abstract = {Disjunctive Answer Set Programming is a powerful declarative programming paradigm with complexity beyond NP. Identifying classes of programs for which the consistency problem is in NP is of interest from the theoretical standpoint and can potentially lead to improvements in the design of answer set programming solvers. One of such classes consists of dual-normal programs, where the number of positive body atoms in proper rules is at most one. Unlike other classes of programs, dual-normal programs have received little attention so far. In this paper we study this class. We relate dual-normal programs to propositional theories and to normal programs by presenting several inter-translations. With the translation from dual-normal to normal programs at hand, we introduce the novel class of body-cycle free programs, which are in many respects dual to head-cycle free programs. We establish the expressive power of dual-normal programs in terms of SE- and UE-models, and compare them to normal programs. We also discuss the complexity of deciding whether dual-normal programs are strongly and uniformly equivalent.}, language = {en} } @article{FriouxSchaubSchellhornetal.2019, author = {Frioux, Cl{\´e}mence and Schaub, Torsten H. and Schellhorn, Sebastian and Siegel, Anne and Wanko, Philipp}, title = {Hybrid metabolic network completion}, series = {Theory and practice of logic programming}, volume = {19}, journal = {Theory and practice of logic programming}, number = {1}, publisher = {Cambridge University Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068418000455}, pages = {83 -- 108}, year = {2019}, abstract = {Metabolic networks play a crucial role in biology since they capture all chemical reactions in an organism. While there are networks of high quality for many model organisms, networks for less studied organisms are often of poor quality and suffer from incompleteness. To this end, we introduced in previous work an answer set programming (ASP)-based approach to metabolic network completion. Although this qualitative approach allows for restoring moderately degraded networks, it fails to restore highly degraded ones. This is because it ignores quantitative constraints capturing reaction rates. To address this problem, we propose a hybrid approach to metabolic network completion that integrates our qualitative ASP approach with quantitative means for capturing reaction rates. We begin by formally reconciling existing stoichiometric and topological approaches to network completion in a unified formalism. With it, we develop a hybrid ASP encoding and rely upon the theory reasoning capacities of the ASP system dingo for solving the resulting logic program with linear constraints over reals. We empirically evaluate our approach by means of the metabolic network of Escherichia coli. Our analysis shows that our novel approach yields greatly superior results than obtainable from purely qualitative or quantitative approaches.}, language = {en} } @article{GebserJanhunenRintanen2020, author = {Gebser, Martin and Janhunen, Tomi and Rintanen, Jussi}, title = {Declarative encodings of acyclicity properties}, series = {Journal of logic and computation}, volume = {30}, journal = {Journal of logic and computation}, number = {4}, publisher = {Oxford Univ. Press}, address = {Eynsham, Oxford}, issn = {0955-792X}, doi = {10.1093/logcom/exv063}, pages = {923 -- 952}, year = {2020}, abstract = {Many knowledge representation tasks involve trees or similar structures as abstract datatypes. However, devising compact and efficient declarative representations of such structural properties is non-obvious and can be challenging indeed. In this article, we take a number of acyclicity properties into consideration and investigate various logic-based approaches to encode them. We use answer set programming as the primary representation language but also consider mappings to related formalisms, such as propositional logic, difference logic and linear programming. We study the compactness of encodings and the resulting computational performance on benchmarks involving acyclic or tree structures.}, language = {en} }