@article{KurbanogluYarman2020, author = {Kurbanoglu, Sevinc and Yarman, Aysu}, title = {Simultaneous determination of hydrochlorothiazide and irbesartan from pharmaceutical dosage forms with RP-HPLC}, series = {Turkish journal of pharmaceutical sciences}, volume = {17}, journal = {Turkish journal of pharmaceutical sciences}, number = {5}, publisher = {Turkish Pharmacists Association}, address = {{\c{C}}ankaya-Ankara}, issn = {1304-530X}, doi = {10.4274/tjps.galenos.2019.76094}, pages = {523 -- 527}, year = {2020}, abstract = {Objectives: In this work, a simple and rapid liquid chromatographic method for the simultaneous determination of irbesartan (IRBE) and hydrochlorothiazide (HCT) was developed and validated by reverse phase high performance liquid chromatography (RP-HPLC).
Materials and Methods: Experimental conditions such as different buffer solutions, various pH values, temperature, composition of the mobile phase, and the effect of flow rate were optimized.
Results: The developed RP-HPLC method for these antihypertensive agents was wholly validated and IRBE was detected in the linear range of 0.1-25 mu g mL(-1) and HCT was detected in the linear range of 0.25-25 mu g mL(-1). Moreover, the suggested chromatographic technique was successfully applied for the determination of the drugs in human serum and pharmaceutical dosage forms with limit of detection values of 0.008 mu g mL(-1) for IRBE and 0.012 mu g mL(-1) for HCT.
Conclusion: The proposed rapid analysis method of these antihypertensive drugs can be easily used and applied by pharmaceutical companies for which the analysis time is important.}, language = {en} } @article{OzcelikayKurbanogluYarmanetal.2020, author = {Ozcelikay, Goksu and Kurbanoglu, Sevinc and Yarman, Aysu and Scheller, Frieder W. and Ozkan, Sibel A.}, title = {Au-Pt nanoparticles based molecularly imprinted nanosensor for electrochemical detection of the lipopeptide antibiotic drug Daptomycin}, series = {Sensors and actuators : B, Chemical}, volume = {320}, journal = {Sensors and actuators : B, Chemical}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2020.128285}, pages = {7}, year = {2020}, abstract = {In this work, a novel electrochemical molecularly imprinted polymer (MIP) sensor for the detection of the lipopeptide antibiotic Daptomycin (DAP) is presented which integrates gold decorated platinum nanoparticles (Au-Pt NPs) into the nanocomposite film. The sensor was prepared by electropolymerization of o-phenylenediamine (o-PD) in the presence of DAP using cyclic voltammetry. Cyclic voltammetry and differential pulse voltammetry were applied to follow the changes in the MIP-layer related to rebinding and removal of the target DAP by using the redox marker [Fe(CN)(6)](3-/4-). Under optimized operational conditions, the MIP/Au-Pt NPs/ GCE nanosensor exhibits a linear response in the range of 1-20 pM towards DAP. The limit of detection and limit of quantification were determined to be 0.161pM +/- 0.012 and 0.489pM +/- 0.012, respectively. The sensitivity towards the antibiotics Vancomycin and Erythromycin and the amino acids glycine and tryptophan was below 7 percent as compared with DAP. Moreover, the nanosensor was also successfully used for the detection of DAP in deproteinated human serum samples.}, language = {en} }