@article{BorremansBusslerSaguTchewonpietal.2020, author = {Borremans, An and Bußler, Sara and Sagu Tchewonpi, Sorel and Rawel, Harshadrai Manilal and Schl{\"u}ter, Oliver K. and Leen, Van Campenhout}, title = {Effect of blanching plus fermentation on selected functional properties of mealworm (Tenebrio molitor) powders}, series = {Foods : open access journal}, volume = {9}, journal = {Foods : open access journal}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2304-8158}, doi = {10.3390/foods9070917}, pages = {17}, year = {2020}, abstract = {The aim of this study was to determine the effect of blanching followed by fermentation of mealworms (Tenebrio molitor) with commercial meat starter cultures on the functional properties of powders produced from the larvae. Full fat and defatted powder samples were prepared from non-fermented and fermented mealworm pastes. Then the crude protein, crude fat, and dry matter contents, pH, bulk density, colour, water and oil binding capacity, foaming capacity and stability, emulsion capacity and stability, protein solubility, quantity of free amino groups, and protein composition of the powders were evaluated. Regardless of the starter culture used, the blanching plus fermentation process reduced the crude and soluble protein contents of the full fat powders and in general impaired their water and oil binding, foaming, and emulsifying properties. Defatting of the powders improved most functional properties studied. The o-phthaldialdehyde assay revealed that the amount of free amino groups was higher in the fermented powders while sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that the soluble proteins of the fermented powders were composed of molecules of lower molecular mass compared to non-fermented powders. As molecular sizes of the soluble proteins decreased, it was clear that the protein structure was also modified by the fermentation process, which in turn led to changes in functional properties. In general, it was concluded that fermentation of mealworms with blanching as a pre-treatment does not contribute to the functional properties studied in this work. Nevertheless, the results confirmed that the properties of non-fermented powders are comparable to other food protein sources.}, language = {en} } @article{KhozroughiBragaWagneretal.2019, author = {Khozroughi, Amin Ghadiri and Braga, Tess Waldbach and Wagner, Janine and Rawel, Harshadrai Manilal}, title = {Investigation of the post mortem zinc protoporphyrin IX fluorescence with respect to its protein-bound and unbound occurrence in aqueous meat extracts}, series = {Food chemistry}, volume = {283}, journal = {Food chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0308-8146}, doi = {10.1016/j.foodchem.2019.01.080}, pages = {462 -- 467}, year = {2019}, abstract = {Zinc protoporphyrin IX (ZnPP) is known to accumulate in most meat products during storage. However, the pathway of its formation is not yet completely clarified. To gain more insights into the specificity of ZnPP occurrence, a SEC-HPLC-UV-fluorescence setup was established to screen the proteins in aqueous meat extracts for their ZnPP fluorescence during incubation. In accordance with previous studies it was identified by SDS-PAGE and MALDI-TOF-MS that ZnPP formation takes place in myoglobin. In this study, valuable new insights into the ZnPP forming pathway were gained, as our results indicated that a significant part of ZnPP - after being formed within the protein - is transitioned into free ZnPP during incubation. Additionally, the obtained results implied that ZnPP may also occur in proteins of higher molecular weight (> 100 kDa).}, language = {en} } @article{SaguTchewonpiZimmermannLandgraeberetal.2020, author = {Sagu Tchewonpi, Sorel and Zimmermann, Lynn and Landgr{\"a}ber, Eva and Homann, Thomas and Huschek, Gerd and {\"O}zpinar, Haydar and Schweigert, Florian J. and Rawel, Harshadrai Manilal}, title = {Comprehensive Characterization and Relative Quantification of α-Amylase/Trypsin Inhibitors from Wheat Cultivars by Targeted HPLC-MS/MS}, series = {Foods}, volume = {9}, journal = {Foods}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2304-8158}, doi = {10.3390/foods9101448}, pages = {25}, year = {2020}, abstract = {The α-amylase/trypsin inhibitors (ATIs) are discussed as being responsible for non-celiac wheat sensitivity (NCWS), besides being known as allergenic components for baker's asthma. Different approaches for characterization and quantification including proteomics-based methods for wheat ATIs have been documented. In these studies generally the major ATIs have been addressed. The challenge of current study was then to develop a more comprehensive workflow encompassing all reviewed wheat-ATI entries in UniProt database. To substantially test proof of concept, 46 German and Turkish wheat samples were used. Two extractions systems based on chloroform/methanol mixture (CM) and under buffered denaturing conditions were evaluated. Three aspects were optimized, tryptic digestion, chromatographic separation, and targeted tandem mass spectrometric analysis (HPLC-MS/MS). Preliminary characterization with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) documented the purity of the extracted ATIs with CM mixture and the amylase (60-80\%)/trypsin (10-20\%) inhibition demonstrated the bifunctional activity of ATIs. Thirteen (individual/common) biomarkers were established. Major ATIs (7-34\%) were differently represented in samples. Finally, to our knowledge, the proposed HPLC-MS/MS method allowed for the first time so far the analysis of all 14 reviewed wheat ATI entries reported.}, language = {en} } @misc{SaguTchewonpiZimmermannLandgraeberetal.2020, author = {Sagu Tchewonpi, Sorel and Zimmermann, Lynn and Landgr{\"a}ber, Eva and Homann, Thomas and Huschek, Gerd and {\"O}zpinar, Haydar and Schweigert, Florian J. and Rawel, Harshadrai Manilal}, title = {Comprehensive Characterization and Relative Quantification of α-Amylase/Trypsin Inhibitors from Wheat Cultivars by Targeted HPLC-MS/MS}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1028}, issn = {1866-8372}, doi = {10.25932/publishup-48611}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-486118}, pages = {27}, year = {2020}, abstract = {The α-amylase/trypsin inhibitors (ATIs) are discussed as being responsible for non-celiac wheat sensitivity (NCWS), besides being known as allergenic components for baker's asthma. Different approaches for characterization and quantification including proteomics-based methods for wheat ATIs have been documented. In these studies generally the major ATIs have been addressed. The challenge of current study was then to develop a more comprehensive workflow encompassing all reviewed wheat-ATI entries in UniProt database. To substantially test proof of concept, 46 German and Turkish wheat samples were used. Two extractions systems based on chloroform/methanol mixture (CM) and under buffered denaturing conditions were evaluated. Three aspects were optimized, tryptic digestion, chromatographic separation, and targeted tandem mass spectrometric analysis (HPLC-MS/MS). Preliminary characterization with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) documented the purity of the extracted ATIs with CM mixture and the amylase (60-80\%)/trypsin (10-20\%) inhibition demonstrated the bifunctional activity of ATIs. Thirteen (individual/common) biomarkers were established. Major ATIs (7-34\%) were differently represented in samples. Finally, to our knowledge, the proposed HPLC-MS/MS method allowed for the first time so far the analysis of all 14 reviewed wheat ATI entries reported.}, language = {en} } @misc{SaguTchewonpiHuschekBoenicketal.2019, author = {Sagu Tchewonpi, Sorel and Huschek, Gerd and B{\"o}nick, Josephine and Homann, Thomas and Rawel, Harshadrai Manilal}, title = {A New Approach of Extraction of α-Amylase/trypsin Inhibitors from Wheat (Triticum aestivum L.), Based on Optimization Using Plackett-Burman and Box-Behnken Designs}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {805}, issn = {1866-8372}, doi = {10.25932/publishup-44222}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442229}, pages = {20}, year = {2019}, abstract = {Wheat is one of the most consumed foods in the world and unfortunately causes allergic reactions which have important health effects. The α-amylase/trypsin inhibitors (ATIs) have been identified as potentially allergen components of wheat. Due to a lack of data on optimization of ATI extraction, a new wheat ATIs extraction approach combining solvent extraction and selective precipitation is proposed in this work. Two types of wheat cultivars (Triticum aestivum L.), Julius and Ponticus were used and parameters such as solvent type, extraction time, temperature, stirring speed, salt type, salt concentration, buffer pH and centrifugation speed were analyzed using the Plackett-Burman design. Salt concentration, extraction time and pH appeared to have significant effects on the recovery of ATIs (p < 0.01). In both wheat cultivars, Julius and Ponticus, ammonium sulfate substantially reduced protein concentration and inhibition of amylase activity (IAA) compared to sodium chloride. The optimal conditions with desirability levels of 0.94 and 0.91 according to the Doehlert design were: salt concentrations of 1.67 and 1.22 M, extraction times of 53 and 118 min, and pHs of 7.1 and 7.9 for Julius and Ponticus, respectively. The corresponding responses were: protein concentrations of 0.31 and 0.35 mg and IAAs of 91.6 and 83.3\%. Electrophoresis and MALDI-TOF/MS analysis showed that the extracted ATIs masses were between 10 and 20 kDa. Based on the initial LC-MS/MS analysis, up to 10 individual ATIs were identified in the extracted proteins under the optimal conditions. The positive implication of the present study lies in the quick assessment of their content in different varieties especially while considering their allergenic potential.}, language = {en} } @article{SaguTchewonpiHuschekBoenicketal.2019, author = {Sagu Tchewonpi, Sorel and Huschek, Gerd and B{\"o}nick, Josephine and Homann, Thomas and Rawel, Harshadrai Manilal}, title = {A New Approach of Extraction of α-Amylase/trypsin Inhibitors from Wheat (Triticum aestivum L.), Based on Optimization Using Plackett-Burman and Box-Behnken Designs}, series = {molecules}, volume = {24}, journal = {molecules}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules24193589}, pages = {18}, year = {2019}, abstract = {Wheat is one of the most consumed foods in the world and unfortunately causes allergic reactions which have important health effects. The α-amylase/trypsin inhibitors (ATIs) have been identified as potentially allergen components of wheat. Due to a lack of data on optimization of ATI extraction, a new wheat ATIs extraction approach combining solvent extraction and selective precipitation is proposed in this work. Two types of wheat cultivars (Triticum aestivum L.), Julius and Ponticus were used and parameters such as solvent type, extraction time, temperature, stirring speed, salt type, salt concentration, buffer pH and centrifugation speed were analyzed using the Plackett-Burman design. Salt concentration, extraction time and pH appeared to have significant effects on the recovery of ATIs (p < 0.01). In both wheat cultivars, Julius and Ponticus, ammonium sulfate substantially reduced protein concentration and inhibition of amylase activity (IAA) compared to sodium chloride. The optimal conditions with desirability levels of 0.94 and 0.91 according to the Doehlert design were: salt concentrations of 1.67 and 1.22 M, extraction times of 53 and 118 min, and pHs of 7.1 and 7.9 for Julius and Ponticus, respectively. The corresponding responses were: protein concentrations of 0.31 and 0.35 mg and IAAs of 91.6 and 83.3\%. Electrophoresis and MALDI-TOF/MS analysis showed that the extracted ATIs masses were between 10 and 20 kDa. Based on the initial LC-MS/MS analysis, up to 10 individual ATIs were identified in the extracted proteins under the optimal conditions. The positive implication of the present study lies in the quick assessment of their content in different varieties especially while considering their allergenic potential.}, language = {en} }