@article{JbeilySuckertGonnertetal.2013, author = {Jbeily, Nayla and Suckert, Iris and Gonnert, Falk A. and Acht, Benedikt and Bockmeyer, Clemens L. and Grossmann, Sascha D. and Blaess, Markus F. and L{\"u}th, Anja and Deigner, Hans-Peter and Bauer, Michael and Claus, Ralf A.}, title = {Hyperresponsiveness of mice deficient in plasma-secreted sphingomyelinase reveals its pivotal role in early phase of host response}, series = {Journal of lipid research}, volume = {54}, journal = {Journal of lipid research}, number = {2}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {0022-2275}, doi = {10.1194/jlr.M031625}, pages = {410 -- 424}, year = {2013}, abstract = {Plasma secretion of acid sphingomyelinase is a hallmark of cellular stress response resulting in the formation of membrane embedded ceramide-enriched lipid rafts and the reorganization of receptor complexes. Consistently, decompartmentalization of ceramide formation from inert sphingomyelin has been associated with signaling events and regulation of the cellular phenotype. Herein, we addressed the question of whether the secretion of acid sphingomyelinase is involved in host response during sepsis. We found an exaggerated clinical course in mice genetically deficient in acid sphingomyelinase characterized by an increased bacterial burden, an increased phagocytotic activity, and a more pronounced cytokine storm. Moreover, on a functional level, leukocyte-endothelial interaction was found diminished in sphingomyelinase-deficient animals corresponding to a distinct leukocytes' phenotype with respect to rolling and sticking as well as expression of cellular surface proteins.(jlr) We conclude that hydrolysis of membrane-embedded sphingomyelin, triggered by circulating sphingomyelinase, plays a pivotal role in the first line of defense against invading microorganisms. This function might be essential during the early phase of infection leading to an adaptive response of remote cells and tissues.-Jbeily, N., I. Suckert, F. A. Gonnert, B. Acht, C. L. Bockmeyer, S. D. Grossmann, M. F. Blaess, A. Lueth, H.-P. Deigner, M. Bauer, and R. A. Claus. Hyperresponsiveness of mice deficient in plasma-secreted sphingomyelinase reveals its pivotal role in early phase of host response. J. Lipid Res. 2013. 54: 410-424.}, language = {en} } @article{JaptokSchmitzFayyazetal.2015, author = {Japtok, Lukasz and Schmitz, Elisabeth I. and Fayyaz, Susann and Kr{\"a}mer, Stephanie and Hsu, Leigh J. and Kleuser, Burkhard}, title = {Sphingosine 1-phosphate counteracts insulin signaling in pancreatic beta-cells via the sphingosine 1-phosphate receptor subtype 2}, series = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, volume = {29}, journal = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, number = {8}, publisher = {Federation of American Societies for Experimental Biology}, address = {Bethesda}, issn = {0892-6638}, doi = {10.1096/fj.14-263194}, pages = {3357 -- 3369}, year = {2015}, abstract = {Glucolipotoxic stress has been identified as a key player in the progression of pancreatic beta-cell dysfunction contributing to insulin resistance and the development of type 2 diabetes mellitus (T2D). It has been suggested that bioactive lipid intermediates, formed under lipotoxic conditions, are involved in these processes. Here, we show that sphingosine 1-phosphate (S1P) levels are not only increased in palmitate-stimulated pancreatic beta-cells but also regulate beta-cell homeostasis in a divergent manner. Although S1P possesses a prosurvival effect in beta-cells, an enhanced level of the sphingolipid antagonizes insulin-mediated cell growth and survival via the sphingosine 1-phosphate receptor subtype 2 (S1P(2)) followed by an inhibition of Akt-signaling. In an attempt to investigate the role of the S1P/S1P(2) axis in vivo, the New Zealand obese (NZO) diabetic mouse model, characterized by beta-cell loss under high-fat diet (HFD) conditions, was used. The occurrence of T2D was accompanied by an increase of plasma S1P levels. To examine whether S1P contributes to the morphologic changes of islets via S1P(2), the receptor antagonist JTE-013 was administered. Most interestingly, JTE-013 rescued beta-cell damage clearly indicating an important role of the S1P(2) in beta-cell homeostasis. Therefore, the present study provides a new therapeutic strategy to diminish beta-cell dysfunction and the development of T2D.}, language = {en} } @article{SolgerKunzFinketal.2019, author = {Solger, Franziska and Kunz, Tobias C. and Fink, Julian and Paprotka, Kerstin and Pfister, Pauline and Hagen, Franziska and Schumacher, Fabian and Kleuser, Burkhard and Seibel, J{\"u}rgen and Rudel, Thomas}, title = {A role of sphingosine in the intracellular survival of Neisseria gonorrhoeae}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {10}, journal = {Frontiers in Cellular and Infection Microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2235-2988}, doi = {10.3389/fcimb.2020.00215}, pages = {12}, year = {2019}, abstract = {Obligate human pathogenic Neisseria gonorrhoeae are the second most frequent bacterial cause of sexually transmitted diseases. These bacteria invade different mucosal tissues and occasionally disseminate into the bloodstream. Invasion into epithelial cells requires the activation of host cell receptors by the formation of ceramide-rich platforms. Here, we investigated the role of sphingosine in the invasion and intracellular survival of gonococci. Sphingosine exhibited an anti-gonococcal activity in vitro. We used specific sphingosine analogs and click chemistry to visualize sphingosine in infected cells. Sphingosine localized to the membrane of intracellular gonococci. Inhibitor studies and the application of a sphingosine derivative indicated that increased sphingosine levels reduced the intracellular survival of gonococci. We demonstrate here, that sphingosine can target intracellular bacteria and may therefore exert a direct bactericidal effect inside cells.}, language = {en} }