@article{WangFosterYanetal.2019, author = {Wang, Xiaoxi and Foster, William J. and Yan, J. and Li, A. and Mutti, Maria}, title = {Delayed recovery of metazoan reefs on the Laibin-Heshan platform margin following the Middle Permian (Capitanian) mass extinction}, series = {Global and planetary change}, volume = {180}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2019.05.005}, pages = {1 -- 15}, year = {2019}, abstract = {Following the Middle Permian (Capitanian) mass extinction there was a global 'reef eclipse', and this event had an important role in the Paleozoic-Mesozoic transition of reef ecosystems. Furthermore, the recovery pattern of reef ecosystems in the Wuchiapingian of South China, before the radiation of Changhsingian reefs, is poorly understood. Here, we present a detailed sedimentological account of the Tieqiao section, South China, which records the only known Wuchiapingian reef setting from South China. Six reef growing phases were identified within six transgressive-regressive cycles. The cycles represent changes of deposition in a shallow basin to a subtidal outer platform setting, and the reefal build-ups are recorded in the shallowest part of the cycles above wave base in the euphotic zone. Our results show that the initial reef recovery started from the shallowing up part of the 1st cycle, within the Clarkina leveni conodont zone, which is two conodont zones earlier than previously recognized. In addition, even though metazoans, such as sponges, do become important in the development of the reef bodies, they are not a major component until later in the Wuchiapingian in the 5th and 6th transgressive-regressive cycles. This suggests a delayed recovery of metazoan reef ecosystems following the Middle Permian extinction. Furthermore, even though sponges do become abundant within the reefs, it is the presence and growth of the encrusters Archaeolithoporella and Tubiphytes and abundance of microbial micrites that play an important role in stabilizing the reef structures that form topographic highs.}, language = {en} } @phdthesis{Wang2020, author = {Wang, Xia}, title = {Reef ecosystem recovery following the Middle Permian (Capitanian) mass extinction}, doi = {10.25932/publishup-48750}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-487502}, school = {Universit{\"a}t Potsdam}, pages = {XI, 144}, year = {2020}, abstract = {To find out the future of nowadays reef ecosystem turnover under the environmental stresses such as global warming and ocean acidification, analogue studies from the geologic past are needed. As a critical time of reef ecosystem innovation, the Permian-Triassic transition witnessed the most severe demise of Phanerozoic reef builders, and the establishment of modern style symbiotic relationships within the reef-building organisms. Being the initial stage of this transition, the Middle Permian (Capitanian) mass extinction coursed a reef eclipse in the early Late Permian, which lead to a gap of understanding in the post-extinction Wuchiapingian reef ecosystem, shortly before the radiation of Changhsingian reefs. Here, this thesis presents detailed biostratigraphic, sedimentological, and palaeoecological studies of the Wuchiapingian reef recovery following the Middle Permian (Capitanian) mass extinction, on the only recorded Wuchiapingian reef setting, outcropping in South China at the Tieqiao section. Conodont biostratigraphic zonations were revised from the Early Permian Artinskian to the Late Permian Wuchiapingian in the Tieqiao section. Twenty main and seven subordinate conodont zones are determined at Tieqiao section including two conodont zone below and above the Tieqiao reef complex. The age of Tieqiao reef was constrained as early to middle Wuchiapingian. After constraining the reef age, detailed two-dimensional outcrop mapping combined with lithofacies study were carried out on the Wuchiapingian Tieqiao Section to investigate the reef growth pattern stratigraphically as well as the lateral changes of reef geometry on the outcrop scale. Semi-quantitative studies of the reef-building organisms were used to find out their evolution pattern within the reef recovery. Six reef growth cycles were determined within six transgressive-regressive cycles in the Tieqiao section. The reefs developed within the upper part of each regressive phase and were dominated by different biotas. The timing of initial reef recovery after the Middle Permian (Capitanian) mass extinction was updated to the Clarkina leveni conodont zone, which is earlier than previous understanding. Metazoans such as sponges were not the major components of the Wuchiapingian reefs until the 5th and 6th cycles. So, the recovery of metazoan reef ecosystem after the Middle Permian (Capitanian) mass extinction was obviously delayed. In addition, although the importance of metazoan reef builders such as sponges did increase following the recovery process, encrusting organisms such as Archaeolithoporella and Tubiphytes, combined with microbial carbonate precipitation, still played significant roles to the reef building process and reef recovery after the mass extinction. Based on the results from outcrop mapping and sedimentological studies, quantitative composition analysis of the Tieqiao reef complex were applied on selected thin sections to further investigate the functioning of reef building components and the reef evolution after the Middle Permian (Capitanian) mass extinction. Data sets of skeletal grains and whole rock components were analyzed. The results show eleven biocommunity clusters/eight rock composition clusters dominated by different skeletal grains/rock components. Sponges, Archaeolithoporella and Tubiphytes were the most ecologically important components within the Wuchiapingian Tieqiao reef, while the clotted micrites and syndepositional cements are the additional important rock components for reef cores. The sponges were important within the whole reef recovery. Tubiphytes were broadly distributed in different environments and played a key-role in the initial reef communities. Archaeolithoporella concentrated in the shallower part of reef cycles (i.e., the upper part of reef core) and was functionally significant for the enlargement of reef volume. In general, the reef recovery after the Middle Permian (Capitanian) mass extinction has some similarities with the reef recovery following the end-Permian mass extinction. It shows a delayed recovery of metazoan reefs and a stepwise recovery pattern that was controlled by both ecological and environmental factors. The importance of encrusting organisms and microbial carbonates are also similar to most of the other post-extinction reef ecosystems. These findings can be instructive to extend our understanding of the reef ecosystem evolution under environmental perturbation or stresses.}, language = {en} }