@article{MondalBhuniaKellingetal.2014, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Giant Zn-14 molecular building block in hydrogen-bonded network with permanent porosity for gas uptake}, series = {Journal of the American Chemical Society}, volume = {136}, journal = {Journal of the American Chemical Society}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/ja410595q}, pages = {44 -- 47}, year = {2014}, abstract = {In situ imidazolate-4,5-diamide-2-olate linker generation leads to the formation of a [Zn-14(L2)(12)(O)-(OH)(2)(H2O)(4)] molecular building block (MBB) with a Zn-6 octahedron inscribed in a Zn-8 cube. The MBBs connect by amide-amide hydrogen bonds to a 3D robust supramolecular network which can be activated for N-2, CO2, CH4, and H-2 gas sorption.}, language = {en} } @article{MondalBhuniaKellingetal.2014, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {A supramolecular Co(II)(14)- metal-organic cube in a hydrogen-bonded network and a Co(II)-organic framework with a flexible methoxy substituent}, series = {Chemical communications}, volume = {50}, journal = {Chemical communications}, number = {41}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c3cc49698h}, pages = {5441 -- 5443}, year = {2014}, abstract = {The reaction of 4,5-dicyano-2-methoxyimidazole (L1) with Co(NO3)(2.) 6H(2)O under solvothermal conditions in DMF, a MOF, IFP-8 and a hydrogen-bonded network consisting of tetradecanuclear Co(II)(14)-metal organic cube (1) are achieved. 1 shows the bcu net with 14 cobalt atoms.}, language = {en} } @article{MondalDeyAttallahetal.2017, author = {Mondal, Suvendu Sekhar and Dey, Subarna and Attallah, Ahmed G. and Krause-Rehberg, Reinhard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Insights into the pores of microwave-assisted metal-imidazolate frameworks showing enhanced gas sorption}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {46}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c7dt00350a}, pages = {4824 -- 4833}, year = {2017}, abstract = {Microwave heating (MW)-assisted synthesis has been widely applied as an alternative method for the chemical synthesis of organic and inorganic materials. In this work, we report MW-assisted synthesis of three isostructural 3D frameworks with a flexible linker arm of the chelating linker 2-substituted imidazolate- 4-amide-5-imidate, named IFP-7-MW (M = Zn, R = OMe), IFP-8-MW (M = Co; R = OMe) and IFP-10-MW (M = Co; R = OEt) (IFP = Imidazolate Framework Potsdam). These chelating ligands were generated in situ by partial hydrolysis of 2-substituted 4,5-dicyanoimidazoles under MW-and also conventional electrical heating (CE)-assisted conditions in DMF. The structure of these materials was determined by IR spectroscopy and powder X-ray diffraction (PXRD) and the identity of the materials synthesized under CE-conditions was established. Materials obtained from MW-heating show many fold enhancement of CO2 and H-2 uptake capacities, compared to the analogous CE-heating method based materials. To understand the inner pore-sizes of IFP structures and variations of gas sorptions, we performed positron annihilation lifetime spectroscopy (PALS), which shows that MW-assisted materials have smaller pore sizes than materials synthesized under CE-conditions. The "kinetically controlled" MW-synthesized material has an inherent ability to trap extra linkers, thereby reducing the pore sizes of CE-materials to ultra/micropores. These ultramicropores are responsible for high gas sorption.}, language = {en} } @article{MondalDeyBaburinetal.2008, author = {Mondal, Suvendu Sekhar and Dey, Subarna and Baburin, Igor A. and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Syntheses of two imidazolate-4-amide-5-imidate linker based hexagonal metal-organic frameworks with flexible ethoxy substituent}, doi = {10.1039/C3CE41632A}, year = {2008}, abstract = {A rare example of in situ linker generation with the formation of soft porous Zn- and Co-MOFs (IFP-9 and -10, respectively) is reported. The flexible ethoxy groups of IFP-9 and -10 protrude into the 1D hexagonal channels. The gas- sorption behavior of both materials for H2, CO2 and CH4 showed wide hysteretic isotherms, typical for MOFs having a flexible substituent which can give rise to a gate effect.}, language = {en} } @misc{MondalDeyBaburinetal.2013, author = {Mondal, Suvendu Sekhar and Dey, Subarna and Baburin, Igor A. and Kelling, Alexandra and Schilde, Uwe and Seifert, Gotthard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Syntheses of two imidazolate-4-amide-5-imidate linker-based hexagonal metal-organic frameworks with flexible ethoxy substituent}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94360}, pages = {9394 -- 9399}, year = {2013}, abstract = {A rare example of in situ linker generation with the formation of soft porous Zn- and Co-MOFs (IFP-9 and -10, respectively) is reported. The flexible ethoxy groups of IFP-9 and -10 protrude into the 1D hexagonal channels. The gas-sorption behavior of both materials for H2, CO2 and CH4 showed wide hysteretic isotherms, typical for MOFs having a flexible substituent which can give rise to a gate effect.}, language = {en} } @article{MondalDeyBaburinetal.2013, author = {Mondal, Suvendu Sekhar and Dey, Subarna and Baburin, Igor A. and Kelling, Alexandra and Schilde, Uwe and Seifert, Gotthard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Syntheses of two imidazolate-4-amide-5-imidate linker-based hexagonal metal-organic frameworks with flexible ethoxy substituent}, series = {CrystEngComm}, volume = {15}, journal = {CrystEngComm}, number = {45}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c3ce41632a}, pages = {9394 -- 9399}, year = {2013}, abstract = {A rare example of in situ linker generation with the formation of soft porous Zn- and Co-MOFs (IFP-9 and -10, respectively) is reported. The flexible ethoxy groups of IFP-9 and -10 protrude into the 1D hexagonal channels. The gas-sorption behavior of both materials for H-2, CO2 and CH4 showed wide hysteretic isotherms, typical for MOFs having a flexible substituent which can give rise to a gate effect.}, language = {en} } @article{MondalHovestadtDeyetal.2017, author = {Mondal, Suvendu Sekhar and Hovestadt, Maximilian and Dey, Subarna and Paula, Carolin and Glomb, Sebastian and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Hartmann, Martin and Holdt, Hans-J{\"u}rgen}, title = {Synthesis of a partially fluorinated ZIF-8 analog for ethane/ethene separation}, series = {CrystEngComm}, volume = {19}, journal = {CrystEngComm}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c7ce01438d}, pages = {5882 -- 5891}, year = {2017}, abstract = {The separation of ethane/ethene mixtures (as well as other paraffin/olefin mixtures) is one of the most important but challenging processes in the petrochemical industry. In this work, we report the synthesis of ZIF-318, isostructural to ZIF-8 but built from the mixed linkers of 2-methylimidazole (L1) and 2-trifluoromethylimidazole (L2) (ZIF-318 = [(Zn(L1)(L2)](n)). The synthesis has been optimized to proceed without ZnO-formation. Using only the L2 linker under solvothermal conditions afforded ZnO-embedded in the H-bonded and non-porous coordination polymer ZnO@[Zn-2(L2)(2)(HCOO)(OH)](n). The slight differences in the size of the substituents (-CH3 vs. -CF3) possibly in combination with different electronic inductive effects led to small but significant changes to the pore size and properties respectively, though the effective pore opening (aperture) size of ZIF-318 remained the same in comparison with ZIF-8. ZIF-318 is chemically (boiling water, methanol, benzene, and wide pH range at room temperature for 1 day), thermally (up to 310 degrees C) stable, and more hydrophobic than ZIF-8 which is proven by contact angle measurement. ZIF-318 can be activated for N-2, CO2, CH4, H-2, ethane, ethane, propane, and propene gases sorptions. Consequently, in breakthrough experiments, the ethane/ethene mixtures can be separated.}, language = {en} } @misc{MondalMarquardtJaniaketal.2015, author = {Mondal, Suvendu Sekhar and Marquardt, Dorothea and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Use of a 4,5-dicyanoimidazolate anion based ionic liquid for the synthesis of iron and silver nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89696}, pages = {5476 -- 5483}, year = {2015}, abstract = {Sixteen new ionic liquids (ILs) with tetraethylammonium, 1-butyl-3-methylimidazolium, 3-methyl-1-octylimidazolium and tetrabutylphosphonium cations paired with 2-substituted 4,5-dicyanoimidazolate anions (substituent at C2 = methyl, trifluoromethyl, pentafluoroethyl, N,N′-dimethyl amino and nitro) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of cation and anion type and structure of the resulting ILs, including several room temperature ionic liquids (RTILs), are reflected in the crystallization, melting points and thermal decomposition of the ILs. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of -22 to -71 °C. We selected one of the newly designed ILs due to its bigger size, compared to the common conventional IL anion and high electron-withdrawing nitrile group leads to an overall stabilization anion that may stabilize the metal nanoparticles. Stable and better separated iron and silver nanoparticles are obtained by the decomposition of corresponding Fe2(CO)9 and AgPF6, respectively, under N2-atmosphere in newly designed nitrile functionalized 4,5-dicyanoimidazolate anion based IL. Very small and uniform size for Fe-nanoparticles of about 1.8 ± 0.6 nm were achieved without any additional stabilizers or capping molecules. Comparatively bigger size of Ag-nanoparticles was obtained through the reduction of AgPF6 by hydrogen gas. Additionally, the AgPF6 precursor was decomposed under microwave irradiation (MWI), fabricating nut-in-shell-like, that is, core-separated-from-shell Ag-nano-structures.}, language = {en} } @article{MondalMarquardtJaniaketal.2016, author = {Mondal, Suvendu Sekhar and Marquardt, Dorothea and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Use of a 4,5-dicyanoimidazolate anion based ionic liquid for the synthesis of iron and silver nanoparticles}, series = {Dalton transactions : an international journal of inorganic chemistry}, journal = {Dalton transactions : an international journal of inorganic chemistry}, number = {45}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/C6DT00225K}, pages = {5476 -- 5483}, year = {2016}, abstract = {Sixteen new ionic liquids (ILs) with tetraethylammonium, 1-butyl-3-methylimidazolium, 3-methyl-1-octylimidazolium and tetrabutylphosphonium cations paired with 2-substituted 4,5-dicyanoimidazolate anions (substituent at C2 = methyl, trifluoromethyl, pentafluoroethyl, N,N′-dimethyl amino and nitro) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of cation and anion type and structure of the resulting ILs, including several room temperature ionic liquids (RTILs), are reflected in the crystallization, melting points and thermal decomposition of the ILs. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of -22 to -71 °C. We selected one of the newly designed ILs due to its bigger size, compared to the common conventional IL anion and high electron-withdrawing nitrile group leads to an overall stabilization anion that may stabilize the metal nanoparticles. Stable and better separated iron and silver nanoparticles are obtained by the decomposition of corresponding Fe2(CO)9 and AgPF6, respectively, under N2-atmosphere in newly designed nitrile functionalized 4,5-dicyanoimidazolate anion based IL. Very small and uniform size for Fe-nanoparticles of about 1.8 ± 0.6 nm were achieved without any additional stabilizers or capping molecules. Comparatively bigger size of Ag-nanoparticles was obtained through the reduction of AgPF6 by hydrogen gas. Additionally, the AgPF6 precursor was decomposed under microwave irradiation (MWI), fabricating nut-in-shell-like, that is, core-separated-from-shell Ag-nano-structures.}, language = {en} } @article{MondalMarquardtJaniaketal.2016, author = {Mondal, Suvendu Sekhar and Marquardt, Dorothea and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Use of a 4,5-dicyanoimidazolate anion based ionic liquid for the synthesis of iron and silver nanoparticles}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {45}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c6dt00225k}, pages = {5476 -- 5483}, year = {2016}, abstract = {Sixteen new ionic liquids (ILs) with tetraethylammonium, 1-butyl-3-methylimidazolium, 3-methyl-1-octylimidazolium and tetrabutylphosphonium cations paired with 2-substituted 4,5-dicyanoimidazolate anions (substituent at C2 = methyl, trifluoromethyl, pentafluoroethyl, N,N\&\#8242;-dimethyl amino and nitro) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of cation and anion type and structure of the resulting ILs, including several room temperature ionic liquids (RTILs), are reflected in the crystallization, melting points and thermal decomposition of the ILs. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of \&\#8722;22 to \&\#8722;71 °C. We selected one of the newly designed ILs due to its bigger size, compared to the common conventional IL anion and high electron-withdrawing nitrile group leads to an overall stabilization anion that may stabilize the metal nanoparticles. Stable and better separated iron and silver nanoparticles are obtained by the decomposition of corresponding Fe2(CO)9 and AgPF6, respectively, under N2-atmosphere in newly designed nitrile functionalized 4,5-dicyanoimidazolate anion based IL. Very small and uniform size for Fe-nanoparticles of about 1.8 ± 0.6 nm were achieved without any additional stabilizers or capping molecules. Comparatively bigger size of Ag-nanoparticles was obtained through the reduction of AgPF6 by hydrogen gas. Additionally, the AgPF6 precursor was decomposed under microwave irradiation (MWI), fabricating nut-in-shell-like, that is, core-separated-from-shell Ag-nano-structures.}, language = {en} }