@phdthesis{Pfeifer2011, author = {Pfeifer, Sebastian}, title = {Neue Ans{\"a}tze zur Monomersequenzkontrolle in synthetischen Polymeren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51385}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Von der Natur geschaffene Polymere faszinieren Polymerforscher durch ihre spezielle auf eine bestimmte Aufgabe ausgerichtete Funktionalit{\"a}t. Diese ergibt sich aus ihrer Bausteinabfolge uber die Ausbildung von Uberstrukturen. Dazu z{\"a}hlen zum Beispiel Proteine (Eiweiße), aus deren Gestalt sich wichtige Eigenschaften ergeben. Diese Struktureigenschaftsbeziehung gilt ebenso f{\"u}r funktionelle synthetische Makromolek{\"u}le. Demzufolge kann die Kontrolle der Monomersequenz in Polymeren bedeutend f{\"u}r die resultierende Form des Polymermolek{\"u}ls sein. Obwohl die Synthese von synthetischen Polymeren mit der Komplexit{\"a}t und der Gr{\"o}ße von Proteinen in absehbarer Zeit wahrscheinlich nicht gelingen wird, k{\"o}nnen wir von der Natur lernen, um neuartige Polymermaterialien mit definierten Strukturen (Sequenzen) zu synthetisieren. Deshalb ist die Entwicklung neuer und besserer Techniken zur Strukturkontrolle von großem Interesse f{\"u}r die Synthese von Makromolek{\"u}len, die perfekt auf ihre Funktion zugeschnitten sind. Im Gegensatz zu der Anzahl fortgeschrittener Synthesestrategien zum Design aus- gefallener Polymerarchitekturen - wie zum Beispiel Sterne oder baumartige Polymere (Dendrimere) - gibt es vergleichsweise wenig Ans{\"a}tze zur echten Sequenzkontrolle in synthetischen Polymeren. Diese Arbeit stellt zwei unterschiedliche Techniken vor, mit denen die Monomersequenz innerhalb eines Polymers kontrolliert werden kann. Gerade bei den großtechnisch bedeutsamen radikalischen Polymerisationen ist die Sequenzkontrolle schwierig, weil die chemischen Bausteine (Monomere) sehr reaktiv sind. Im ersten Teil dieser Arbeit werden die Eigenschaften zweier Monomere (Styrol und N-substituiertes Maleinimid) geschickt ausgenutzt, um in eine Styrolkette definierte und lokal scharf abgegrenzte Funktionssequenzen einzubauen. Uber eine kontrollierte radikalische Polymerisationsmethode (ATRP) wurden in einer Ein-Topf-Synthese {\"u}ber das N-substituierte Maleinimid chemische Funktionen an einer beliebigen Stelle der Polystyrolkette eingebaut. Es gelang ebenfalls, vier unterschiedliche Funktionen in einer vorgegebenen Sequenz in die Polymerkette einzubauen. Diese Technik wurde an zwanzig verschiedenen N-substituierten Maleinimiden getestet, die meisten konnten erfolgreich in die Polymerkette integriert werden. In dem zweiten in dieser Arbeit vorgestellten Ansatz zur Sequenzkontrolle, wurde der schrittweise Aufbau eines Oligomers aus hydrophoben und hydrophilen Segmenten (ω-Alkin-Carbons{\"a}ure bzw. α-Amin-ω-Azid-Oligoethylenglycol) an einem l{\"o}slichen Polymertr{\"a}ger durchgef{\"u}hrt. Das Oligomer konnte durch die geschickte Auswahl der Verkn{\"u}pfungsreaktionen ohne Schutzgruppenstrategie synthetisiert werden. Der l{\"o}sliche Polymertr{\"a}ger aus Polystyrol wurde mittels ATRP selbst synthetisiert. Dazu wurde ein Startreagenz (Initiator) entwickelt, das in der Mitte einen s{\"a}urelabilen Linker, auf der einen Seite die initiierende Einheit und auf der anderen die Ankergruppe f{\"u}r die Anbindung des ersten Segments tr{\"a}gt. Der l{\"o}sliche Polymertr{\"a}ger erm{\"o}glichte einerseits die schrittweise Synthese in L{\"o}sung. Andererseits konnten {\"u}bersch{\"u}ssige Reagenzien und Nebenprodukte zwischen den Reaktionsschritten durch F{\"a}llung in einem Nicht-L{\"o}sungsmittel einfach abgetrennt werden. Der Linker erm{\"o}glichte die Abtrennung des Oligomers aus jeweils drei hydrophoben und hydrophilen Einheiten nach der Synthese.}, language = {de} } @phdthesis{Rettig2006, author = {Rettig, Hartmut Arnim}, title = {Methoden zur Synthese von definierten bioorganisch-synthetischen Blockcopolymeren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10293}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Bioorganisch-synthetische Blockcopolymere sind sowohl f{\"u}r die Materialwissenschaft als auch f{\"u}r die Medizin hochinteressant. Diese Arbeit besch{\"a}ftigte sich mit neuen Synthesewegen f{\"u}r die Herstellung dieser Blockcopolymere. Zun{\"a}chst wurde der klassische Ansatz zur Herstellung eines Blockcopolymers {\"u}ber die Kupplung der beiden Segmente aufgegriffen. Hierzu wurde eine Methode zur Synthese von selektiv s{\"a}ureendfunktionalisierten Polyacrylaten mittels einer terminalen Benzylesterschutzgruppe vorgestellt. F{\"u}r die Herstellung von bioorganisch-synthetischen Blockcopolymeren mit einem gr{\"o}ßeren Polymersegment wurde daher ein anderer Syntheseansatz entwickelt. Dieser geht von einem funktionalisierten Oligopeptid aus, an dem durch Polymerisation das synthetische Segment aufgebaut wird. Der Aufbau erfolgte durch kontrolliert radikalische Polymerisation, um ein m{\"o}glichst definiertes Segment zu erhalten. Zun{\"a}chst wurde eine Synthese von Oligopeptid-Makroinitiatoren f{\"u}r die ATRP-Polymerisation durchgef{\"u}hrt. Es konnte gezeigt werden, dass in geeigneten polaren L{\"o}sungsmitteln (DMSO, DMF) eine Polymerisation mit dem ATRP-Oligopeptid-Makroinitiator erfolgreich ist. Allerdings treten w{\"a}hrend der Polymerisation Wechselwirkungen zwischen dem Katalysator und dem Oligopeptid auf. Eine Alternative bietet die RAFT-Polymerisation, da sie ohne einen Katalysator durchgef{\"u}hrt wird. Es gelang ausgehend von dem Oligopeptid-ATRP-Makroinitiator den {\"U}bertr{\"a}ger herzustellen. Die RAFT-Polymerisation mit einem Oligopeptid{\"u}bertr{\"a}ger stellt eine wichtige Methode f{\"u}r die Herstellung von bioorganisch-synthetischen Blockcopolymeren dar. Sie besitzt eine hohe Toleranz gegen{\"u}ber funktionellen Gruppen. Die so hergestellten Blockcopolymere sind frei von Verunreinigungen, wie z.B. {\"U}bergangsmetallen. Dabei l{\"a}ßt sich das Molekulargewicht des synthetischen Blocks bei einer Polydispersit{\"a}t um 1,2 gut kontrollieren.}, subject = {ATRP}, language = {de} }