@article{MaiLindeLinker2020, author = {Mai-Linde, Yasemin and Linker, Torsten}, title = {Radical clock probes to determine carbohydrate radical stabilities}, series = {Organic letters}, volume = {22}, journal = {Organic letters}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {1523-7060}, doi = {10.1021/acs.orglett.0c00111}, pages = {1525 -- 1529}, year = {2020}, abstract = {Carbohydrate radical stabilities in the 1- and 2-position have been determined by a radical clock approach, starting from cyclopropanated sugars with xanthates as precursors. Various hexoses and pentoses afforded 1-deoxy sugars as main products, indicating that anomeric radicals are more stable than radicals in the 2-position. An additional influence of the configurations on radical stabilities has been observed. Our results should be interesting for the understanding of 1,2-radical rearrangements in carbohydrate chemistry and offer an easy access to deoxy-vinyl sugars.}, language = {en} } @misc{SchmidtElizarovBergeretal.2013, author = {Schmidt, Bernd and Elizarov, Nelli and Berger, Ren{\´e} and H{\"o}lter, Frank}, title = {Scope and limitations of the Heck-Matsuda-coupling of phenol diazonium salts and styrenes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95070}, pages = {3674 -- 3691}, year = {2013}, abstract = {4-Phenol diazonium salts undergo Pd-catalyzed Heck reactions with various styrenes to 4'-hydroxy stilbenes. In almost all cases higher yields and fewer side products were observed, compared to the analogous 4-methoxy benzene diazonium salts. In contrast, the reaction fails completely with 2- and 3-phenol diazonium salts. For these substitution patterns the methoxy-substituted derivatives are superior.}, language = {en} }