@phdthesis{Mondal2013, author = {Mondal, Suvendu Sekhar}, title = {Design of isostructural metal-imidazolate frameworks : application for gas storage}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69692}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The sharply rising level of atmospheric carbon dioxide resulting from anthropogenic emissions is one of the greatest environmental concerns facing our civilization today. Metal-organic frameworks (MOFs) are a new class of materials that constructed by metal-containing nodes bonded to organic bridging ligands. MOFs could serve as an ideal platform for the development of next generation CO2 capture materials owing to their large capacity for the adsorption of gases and their structural and chemical tunability. The ability to rationally select the framework components is expected to allow the affinity of the internal pore surface toward CO2 to be precisely controlled, facilitating materials properties that are optimized for the specific type of CO2 capture to be performed (post-combustion capture, precombustion capture, or oxy-fuel combustion) and potentially even for the specific power plant in which the capture system is to be installed. For this reason, significant effort has been made in recent years in improving the gas separation performance of MOFs and some studies evaluating the prospects of deploying these materials in real-world CO2 capture systems have begun to emerge. We have developed six new MOFs, denoted as IFPs (IFP-5, -6, -7, -8, -9, -10, IFP = Imidazolate Framework Potsdam) and two hydrogen-bonded molecular building block (MBB, named as 1 and 2 for Zn and Co based, respectively) have been synthesized, characterized and applied for gas storage. The structure of IFP possesses 1D hexagonal channels. Metal centre and the substituent groups of C2 position of the linker protrude into the open channels and determine their accessible diameter. Interestingly, the channel diameters (range : 0.3 to 5.2 {\AA}) for IFP structures are tuned by the metal centre (Zn, Co and Cd) and substituent of C2 position of the imidazolate linker. Moreover hydrogen bonded MBB of 1 and 2 is formed an in situ functionalization of a ligand under solvothermal condition. Two different types of channels are observed for 1 and 2. Materials contain solvent accessible void space. Solvent could be easily removed by under high vacuum. The porous framework has maintained the crystalline integrity even without solvent molecules. N2, H2, CO2 and CH4 gas sorption isotherms were performed. Gas uptake capacities are comparable with other frameworks. Gas uptake capacity is reduced when the channel diameter is narrow. For example, the channel diameter of IFP-5 (channel diameter: 3.8 {\AA}) is slightly lower than that of IFP-1 (channel diameter: 4.2 {\AA}); hence, the gas uptake capacity and Brunauer-Emmett-Teller (BET) surface area are slightly lower than IFP-1. The selectivity does not depend only on the size of the gas components (kinetic diameter: CO2 3.3 {\AA}, N2 3.6 {\AA} and CH4 3.8 ) but also on the polarizability of the surface and of the gas components. IFP-5 and-6 have the potential applications for the separation of CO2 and CH4 from N2-containing gas mixtures and CO2 and CH4 containing gas mixtures. Gas sorption isotherms of IFP-7, -8, -9, -10 exhibited hysteretic behavior due to flexible alkoxy (e.g., methoxy and ethoxy) substituents. Such phenomenon is a kind of gate effects which is rarely observed in microporous MOFs. IFP-7 (Zn-centred) has a flexible methoxy substituent. This is the first example where a flexible methoxy substituent shows the gate opening behavior in a MOF. Presence of methoxy functional group at the hexagonal channels, IFP-7 acted as molecular gate for N2 gas. Due to polar methoxy group and channel walls, wide hysteretic isotherm was observed during gas uptake. The N2 The estimated BET surface area for 1 is 471 m2 g-1 and the Langmuir surface area is 570 m2 g-1. However, such surface area is slightly higher than azolate-based hydrogen-bonded supramolecular assemblies and also comparable and higher than some hydrogen-bonded porous organic molecules.}, language = {en} } @phdthesis{Weber2007, author = {Weber, Jens}, title = {Meso- und mikropor{\"o}se Hochleistungspolymere : Synthese, Analytik und Anwendungen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15994}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Die Arbeit beschreibt die Synthese, Charakterisierung und Anwendung von meso- und mikropor{\"o}sen Hochleistungspolymeren. Im ersten Teil wird die Synthese von mesopor{\"o}sen Polybenzimidazol (PBI) auf der Basis einer Templatierungsmethode vorgestellt. Auf der Grundlage kommerzieller Monomere und Silikatnanopartikel sowie eines neuen Vernetzers wurde ein Polymer-Silikat-Hybridmaterial aufgebaut. Das Herausl{\"o}sen des Silikats mit Ammoniumhydrogendifluorid f{\"u}hrt zu mesopor{\"o}sen Polybenzimidazolen mit spherischen Poren von 9 bis 11 nm Durchmesser. Die Abh{\"a}ngigkeit der beobachteten Porosit{\"a}t vom Massenverh{\"a}ltnis Silikat zu Polymer wurde ebenso untersucht wie die Abh{\"a}ngigkeit der Porosit{\"a}t vom Vernetzergehalt. Die Porosit{\"a}t vollvernetzter Proben zeigt eine lineare Abh{\"a}ngigkeit vom Verh{\"a}ltnis Silikat zu Polymer bis zu einem Grenzwert von 1. Wird der Grenzwert {\"u}berschritten, ist teilweiser Porenkollaps zu beobachten. Die Abh{\"a}ngigkeit der Porosit{\"a}t vom Vernetzergehalt bei festem Silikatgehalt ist nichtlinear. Oberhalb einer kritischen Vernetzerkonzentration wird eine komplette Replikation der Nanopartikel gefunden. Ist die Vernetzerkonzentration dagegen kleiner als der kritische Wert, so ist der v{\"o}llige Kollaps einiger Poren bei Stabilit{\"a}t der verbleibenden Poren zu beobachten. Ein komplett unpor{\"o}ses PBI resultiert bei Abwesenheit des Vernetzers. Die mesopor{\"o}sen PBI-Netzwerke konnten kontrolliert mit Phosphors{\"a}ure beladen werden. Die erhaltenen Addukte wurden auf ihre Protonenleitf{\"a}higkeit untersucht. Es kann gezeigt werden, dass die Nutzung der vordefinierten Morphologie im Vergleich zu einem unstrukturierten PBI in h{\"o}heren Leitf{\"a}higkeiten resultiert. Durch die vernetzte Struktur war des Weiteren gen{\"u}gend mechanische Stabilit{\"a}t gegeben, um die Addukte reversibel und bei sehr guten Leitf{\"a}higkeiten bis zu Temperaturen von 190°C bei 0\% relativer Feuchtigkeit zu untersuchen. Dies ist f{\"u}r unstrukturierte Phosphors{\"a}ure/PBI - Addukte aus linearem PBI nicht m{\"o}glich. Im zweiten Teil der Arbeit wird die Synthese intrinsisch mikropor{\"o}ser Polyamide und Polyimide vorgestellt. Das Konzept intrinsisch mikropor{\"o}ser Polymere konnte damit auf weitere Polymerklassen ausgeweitet werden. Als zentrales, strukturinduzierendes Motiv wurde 9,9'-Spirobifluoren gew{\"a}hlt. Dieses Molek{\"u}l ist leicht und vielf{\"a}ltig zu di- bzw. tetrafunktionellen Monomeren modifizierbar. Dabei wurden bestehende Synthesevorschriften modifiziert bzw. neue Vorschriften entwickelt. Ein erster Schwerpunkt innerhalb des Kapitels lag in der Synthese und Charakterisierung von l{\"o}slichen, intrinsisch mikropor{\"o}sen, aromatischen Polyamid und Polyimid. Es konnte gezeigt werden, dass das Beobachten von Mikroporosit{\"a}t stark von der molekularen Architektur und der Verarbeitung der Polymere abh{\"a}ngig ist. Die Charakterisierung der Porosit{\"a}t erfolgte unter Nutzung von Stickstoffsorption, Kleinwinkelr{\"o}ntgenstreuung und Molecular Modeling. Es konnte gezeigt werden, dass die Proben stark vom Umgebungsdruck abh{\"a}ngigen Deformationen unterliegen. Die starke Quellung der Proben w{\"a}hrend des Sorptionsvorgangs konnte durch Anwendung des "dual sorption" Modells, also dem Auftreten von Porenf{\"u}llung und dadurch induzierter Henry-Sorption, erkl{\"a}rt werden. Der zweite Schwerpunkt des Kapitels beschreibt die Synthese und Charakterisierung mikropor{\"o}ser Polyamid- und Polyimidnetzwerke. W{\"a}hrend Polyimidnetzwerke auf Spirobifluorenbasis ausgepr{\"a}gte Mikroporosit{\"a}t und spezifische Oberfl{\"a}chen von ca. 1100 m²/g aufwiesen, war die Situation f{\"u}r entsprechende Polyamidnetzwerke abweichend. Mittels Stickstoffsorption konnte keine Mikroporosit{\"a}t nachgewiesen werden, jedoch konnte mittels SAXS eine innere Grenzfl{\"a}che von ca. 300 m²/g nachgewiesen werden. Durch die in dieser Arbeit gezeigten Experimente kann die Grenze zwischen Polymeren mit hohem freien Volumen und mikropor{\"o}sen Polymeren somit etwas genauer gezogen werden. ausgepr{\"a}gte Mikroporosit{\"a}t kann nur in extrem steifen Strukturen nachgewiesen werden. Die Kombination der Konzepte "Mesoporosit{\"a}t durch Templatierung" und "Mikroporosit{\"a}t durch strukturierte Monomere" hatte ein hierarchisch strukturiertes Polybenzimidazol zum Ergebnis. Die Pr{\"a}senz einer Strukturierung im molekularen Maßstab konnte SAXS bewiesen werden. Das so strukturierte Polybenzimidazol zeichnete sich durch eine h{\"o}here Protonenleitf{\"a}higkeit im Vergleich zu einem rein mesopor{\"o}sen PBI aus. Der letzte Teil der Arbeit besch{\"a}ftigte sich mit der Entwicklung einer neuen Synthesemethode zur Herstellung von Polybenzimidazol. Es konnte gezeigt werden, dass lineares PBI in einer eutektischen Salzschmelze aus Lithium- und Kaliumchlorid synthetisiert werden kann. Die Umsetzung der spirobifluorenbasierten Monomere zu l{\"o}slichem oder vernetztem PBI ist in der Salzschmelze m{\"o}glich.}, language = {de} }