@article{SandmannMuenzbergBresseletal.2022, author = {Sandmann, Michael and M{\"u}nzberg, Marvin and Bressel, Lena and Reich, Oliver and Hass, Roland}, title = {Inline monitoring of high cell density cultivation of Scenedesmus rubescens in a mesh ultra-thin layer photobioreactor by photon density wave spectroscopy}, series = {BMC Research Notes / Biomed Central}, volume = {15}, journal = {BMC Research Notes / Biomed Central}, number = {1}, publisher = {Biomed Central (London)}, address = {London}, issn = {1756-0500}, doi = {10.1186/s13104-022-05943-2}, pages = {7}, year = {2022}, abstract = {Objective Due to multiple light scattering that occurs inside and between cells, quantitative optical spectroscopy in turbid biological suspensions is still a major challenge. This includes also optical inline determination of biomass in bioprocessing. Photon Density Wave (PDW) spectroscopy, a technique based on multiple light scattering, enables the independent and absolute determination of optical key parameters of concentrated cell suspensions, which allow to determine biomass during cultivation. Results A unique reactor type, called "mesh ultra-thin layer photobioreactor" was used to create a highly concentrated algal suspension. PDW spectroscopy measurements were carried out continuously in the reactor without any need of sampling or sample preparation, over 3 weeks, and with 10-min time resolution. Conventional dry matter content and coulter counter measurements have been employed as established offline reference analysis. The PBR allowed peak cell dry weight (CDW) of 33.4 g L-1. It is shown that the reduced scattering coefficient determined by PDW spectroscopy is strongly correlated with the biomass concentration in suspension and is thus suitable for process understanding. The reactor in combination with the fiber-optical measurement approach will lead to a better process management.}, language = {en} } @article{BresselReich2014, author = {Bressel, Lena and Reich, Oliver}, title = {Theoretical and experimental study of the diffuse transmission of light through highly concentrated absorbing and scattering materials Part I: Monte-Carlo simulations}, series = {Journal of quantitative spectroscopy \& radiative transfer}, volume = {146}, journal = {Journal of quantitative spectroscopy \& radiative transfer}, publisher = {Elsevier}, address = {Oxford}, issn = {0022-4073}, doi = {10.1016/j.jqsrt.2014.01.007}, pages = {190 -- 198}, year = {2014}, abstract = {In many technical materials and commercial products like sunscreen or paint high particle and absorber concentrations are present. An important parameter for slabs of these materials is the diffuse transmission of light, which quantifies the total amount of directly and diffusely transmitted light. Due to the high content of scattering particles not only multiple scattering but also additional dependent scattering occurs. Hence, simple analytical models cannot be applied to calculate the diffuse transmission. In this work a Monte-Carlo program for the calculation of the diffuse transmission of light through dispersions in slab-like geometry containing high concentrations of scattering particles and absorbers is presented and discussed in detail. Mie theory is applied for the calculation of the scattering properties of the samples. Additionally, dependent scattering is considered in two different models, the well-known hard sphere model in the Percus-Yevick approximation (HSPYA) and the Yukawa model in the Mean Spherical Approximation (YMSA). Comparative experiments will show the accurateness of the program as well as its applicability to real samples [1]. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} }